
Landau’s Fermi Liquid Concept to

the Extreme:

the Physics of Heavy Fermions
Prof. Thomas Pruschke

XVI Training Course in the Physics of Strongly Correlated
Systems, Salerno, Fall 2011





Contents

1 The homogeneous electron gas 5

1.1 Basic concetps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Ground state properties . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Evaluation of k⃗-sums – Density of States . . . . . . . . . . . . . . 9

1.4 Excited states of the electron gas . . . . . . . . . . . . . . . . . . . 10

1.5 Finite temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Fermi liquid theory 15

2.1 Beyond the independent electron approximation . . . . . . . . . . 16

2.2 Landau’s Fermi liquid theory . . . . . . . . . . . . . . . . . . . . . . 18

3 Heavy Fermions 35

3.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Connection of Heavy Fermions and Kondo effect . . . . . . . . . . 37

3.3 Some fundamental results . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The local Fermi liquid . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Heavy Fermions - a first attempt . . . . . . . . . . . . . . . . . . . 45

3.6 DMFT treatment of the periodic Kondo model . . . . . . . . . . . 48

i



CONTENTS

ii



Introductory remarks

Introductory remarks

Landau’s Fermi liquid is the fundamental concept in modern solid state physics

and sets the language and notion used to communicate and interpret physi-

cal observations in solids. Within the Fermi liquid theory, electrons in solids

are described as non-interacting quasi-particles, with some of their properties

changed as compared to the electrons in free space. Most of you will know

the concept of the effective mass, which often is sufficient to explain a whole

bunch of different experimental findings for a given material. In addition, new

“types” of particles, so-called holes, appear, and both are needed for a proper

understanding of the electronic properties of soilds.

Usually, the electronic properties are captured rather accurately in terms of

well-behaved quasi-particles even at elevated temperatures, and interactions

only play a role in renormalizing certain correlation functions. However, there

are materials, which show (i) extremely strong renormalizations of the prop-

erties of electrons and (ii) where the quasi-particles do not survive increasing

temperature too much. Furthermore, these creatures are rather sensitive to

the tuning of material parameters or other external conditions, and one can

frequently encounter quantum phase transitions, quantum critical behavior and

the formation of so-called non-Fermi liquid phases. The material class where

this behavior is most prominent are the so-called Heavy Fermions. You have

learned about various experimental facts found in this class in the series of

lectures by John Mydosh.

This series of lectures is intended to give you a solid background in the theo-

retical description of these extreme realizations of Fermi liquids. I will touch

- briefly - the breakdown of Fermi liquids in Heavy Fermions, but will mostly

concentrate on a proper description of this “simpler” regime. You will learn

why Landau’s Fermi liquid theory is applicable at all in solids, what are its

underlying assumptions and what consequences follow from these assumptions.

This will cover the first part of the lecture series. The second is then devoted

to the Heavy Fermion behavior. You will meet two basic models used to theo-

retically describe these systems and learn about there fundamental properties,

in particular the Kondo effect, and Noziéres interpretation in terms of a local

Fermi liquid. Since this is a non-trivial many particle phenomenon, you will also

meet a tool to calculate properties numerically, Wilson’s Numerical Renormal-

iztion Group, and learn from it the fundamental ideas behind Heavy Fermion

physics. Finally, I will try to make contact to John’s lectures again and give

you an idea about our current understanding and tools to calculate properties

of Heavy Fermion systems.
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Introductory remarks

I will assume that you are familiar with basic concepts in solid state theory

and - very important - also some fundamental theoretical concepts, like second

quantization and statistical physics. It is also helpful to have an idea what

Green’s functions in many-body physics are, how to work with them (at least

on the levels of equations-of-motion) and what they can tell us.

Finally, there are some books and review articles you may want to read. The

list is by no means complete, and I urge you to use the internet to search for

more literature, as most is actually contained in normal publications and one

has to put together bits and pieces.
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Lecture 1

The homogeneous electron gas
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1.1. BASIC CONCETPS

1.1 Basic concetps

The homogeneous electron gas is in connection with solid state physics also

sometimes called jellium model or free-electron model for the solid. One here

neglects all structures imposed by the crystal and approximates the lattice by a

homogeneous positive background guaranteeing charge neutrality. In addition

to neglecting the crystal we also ignore the Coulomb interaction between the

electrons. This seems an even more rude approximation at first sight. However,

as we will learn later, it is the one that is usually better justified than the

assumption of a homogeneous system.

The Hamiltonian for the noninteracting electron gas is simply given by

Ĥe = 1

2m

N

∑
i=1

ˆ⃗p2
i (1.1)

= ⨋
k⃗σ

⟨ϕk⃗σ ∣
ˆ⃗p2

2m
∣ϕk⃗σ⟩ĉ

†
k⃗σ
ĉ
k⃗σ

(1.2)

Since electrons are fermions, the operators ĉ
k⃗σ

and ĉ†
k⃗σ

must fulfill anticom-

mutation relations, i.e. {ĉ
k⃗ ′σ′

, ĉ†
k⃗σ

} = δk⃗,k⃗ ′δσ,σ′ . Furthermore, as we are now

working with solids, which occupy a finite region in space, we assume that the

electrons are confined to a finite but large volume1 V = L3. A certain mathemat-

ical problem arises from the existence of the boundaries, which would require

Ψ(r⃗ ∈ ∂V ) = 0 or at least an exponential decay outside the cube. The wave

functions are then in principle standing waves, described by either sin or cos

functions. For practical purposes it is however more convenient to work with

travelling waves described by a complex exponential function. Quite obviously,

the type of solution is determined by the existence of boundaries. However,

quite often we are not interested in properties at the boundary, but in the bulk

properties far away from the boundary. These bulk properties can on the other

hand not depend on the details of boundary, i.e. we are free to choose conve-

nient boundary conditions in such a situation. This fact has first been observed

by Born and von Karmann, who introduced the concept of periodic boundary

conditions or Born-von Karman boundary conditions, which identify the prop-

erties at position at xi+L with those at xi. For a chain this amounts to closing

it into a ring, in two dimensions one ends up with a torus, and so on.

Employing periodic boundary conditions we have

ϕ(x, y, z) = ϕ(x +L, y, z) = ϕ(x, y +L, z) = ϕ(x, y, z +L)

1For simplicity we assume a cube of base length L.
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LECTURE 1. THE HOMOGENEOUS ELECTRON GAS

for the wave functions entering (1.2). These conditions lead to discrete k⃗ vectors

which have the components

ki =
2π

L
ni , ni ∈ Z; .

As the set of vectors k⃗ enumbers all possible inequivalent single-particle states

it serves as quantum number. We in addition need the spin as further quantum

number, which we denote by σ with σ = ±1. We then have

ϕk⃗σ(r⃗) = 1√
V
eik⃗⋅r⃗

⟨ϕk⃗σ ∣
ˆ⃗p2

2m
∣ϕk⃗σ⟩ = h̵2k2

2m
=∶ εk⃗ .

The discrete k⃗ points form a lattice

2π
L

2π
L

in k⃗ space, where each lattice point

can accommodate two single-particle

states with different spin orientation.

The volume per k⃗ point is just the vol-

ume of the elementary cell of the re-

ciprocal lattice, i.e. (2π)3/V . Note,

however, that we now do not have the

restriction that the inequivalent k⃗ vec-

tors come from the first Brillouin zone

as we do not have a crystal with dis-

crete translational symmetry, but free

space.

1.2 Ground state properties

In particular, the ground state is obtained by occupying the set {k⃗i} of k⃗ points

with the smallest possible energies respecting Pauli’s principle, i.e.

⟨ΨG∣ĉ†k⃗σ ĉk⃗σ ∣ΨG⟩ =
⎧⎪⎪⎨⎪⎪⎩

1, for k⃗ ∈ {k⃗i}
0, else

.

As εk⃗ ∝ k2, these states can be found within a sphere (Fermi sphere) with a

certain radius kF (Fermi wave vector) about k⃗ = 0. The value of kF can be

determined from the requirement, that the sum over all occupied states must

equal to the number of particles, i.e.

N = ∑
σ
∑
k≤kF
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1.2. GROUND STATE PROPERTIES

For simplicity we assume that N is even.

How does one evaluate such sums? To this end let me remind you, that the

Volume V of the system is very large and consequently the volume per k⃗ point

d3k = (2π)
3

V is very small. Then,

∑
k⃗

. . . = V ∑
k⃗

d3k

(2π)3
. . .

V→∞→ V ∫
d3k

(2π)3
. . .

With this observation we find in the thermodynamic limit V →∞ and n = N/V
finite

n = N
V

= 1

V
∑
σ
∑
k≤kF

= ∑
σ
∫

k≤kF

d3k

(2π)3
= 1

4π3

kF

∫
0

4πk2dk = 1

3π2
k3
F ,

which leads to

kf = (3π2n)1/3
(1.3)

as expression for the Fermi wave vector. The corresponding energy

εkF =
h̵2k2

F

2m

is called Fermi energy and usually denoted as EF . We can also calculate the

ground-state energy, which becomesexercise

E0 = ∑
k⃗,k≤kF

∑
σ

εk⃗ =
3

5
NEF (1.4)

and the energy per particle

ε0 =
E0

N
= 3

5
EF .

With the knowledge of the ground state energy we can start to calculate physical

properties. As examples let us determine the pressure P and bulk modulus B0

of the Fermi gas at T = 0. These two quantities are related to the ground state

energy through

P = −(∂E0

∂V
)
N

B0 = −V (∂P
∂V

)
N

.

As we know the explicit dependency of E0 on the volume, it is easy to showexercise

P = −3

5
N
h̵2

2m
(−3π2 N

V 2
) 2

3
(3π2N

V
)
−1/3

= 2

3

E0

V
= 2

5
nEF

and

B0 =
5

3
P = 2

3
nEF .
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LECTURE 1. THE HOMOGENEOUS ELECTRON GAS

1.3 Evaluation of k⃗-sums – Density of States

In the following we will rather often have to deal with expressions of the type

1

V
∑
k⃗

F (εk⃗) ,

where F (εk⃗) is some function depending on k⃗ through the dispersion only. Such

a sum can be rewritten as

1

V
∑
k⃗

F (εk⃗) =
∞

∫
−∞

N(ε)F (ε)dε ,

where we have introduce the density of states (DOS)

N(ε) ∶= 1

V
∑
k⃗

δ(ε − εk⃗) .

Note that this definition also holds for a more general dispersion appearing in

a real lattice. Let us calculate the DOS for εk⃗ =
h̵2k2

2m . From the definition one

firstly obtains

N(ε) = 1

V
∑
k⃗

δ(ε − εk⃗) =
∞

∫
0

4πk2dk

(2π)3
δ(ε − εk⃗) . (1.5)

To evaluate this expression furher I remind you of the relation

δ(ε − εk⃗) = ∑
ki

1

∣∇⃗k⃗εk⃗=k⃗i ∣
δ(k − ki) , ε − εk⃗i = 0 , ∇⃗k⃗εk⃗=k⃗i ≠ 0 .

In the present case as εk⃗ ≥ 0 we also must have ε ≥ 0 and hence there exist two

roots for a given ε, namely k0 = ±
√

2mε
h̵2

. As also k ≥ 0 in the integral (1.5), we

only need the positive root here. Furthermore, ∣∇⃗k⃗εk⃗∣ =
h̵2k
m ≠ 0 for k ≠ 0 and

therefore

N(ε) = 1

(2π)3
4πk2

0

m

h̵2k0
= m

2π2h̵2

√
2mε

h̵2

= 1

4π2
(2m

h̵2
)

3
2 √

ε = 1

4π2
( 2m

h̵2k2
F

)
3
2

k3
F

√
ε

With the definitions of kf in (1.3) and EF we finally obtain

N(ε) = 3

4

n

EF

√
ε

EF
(1.6)
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1.4. EXCITED STATES OF THE ELECTRON GAS

for the DOS. Some warning: Sometimes the spin factor 2 is included in the def-

inition of the DOS, which then reads Ñ (ε) = 2N(ε) = 3
2
n
EF

√
ε
EF

. A particularly

important value is the DOS at the Fermi energy N(EF ), which is

N(EF ) = 3

4

n

EF
∝ 1

EF
∝m (1.7)

This is an important proportionality you should memorize!

1.4 Excited states of the electron gas

To construct excited states of the noninteracting, free electron gas we have only

one possibility, viz taking one electron from a state with ≤ kF and putting it into

a state with k′ > kF . Let us denote the difference in momentum by q⃗ = k⃗ ′ − k⃗.

We now must distinguish two possibilities:

(i) q ≤ 2kF :

Not all states inside the Fermi

sphere are possible final states for

a given q⃗, but only those that ful-

fil the requirement k′ = ∣k⃗ + q⃗∣ ≥ kF .

Further, as k⃗ cannot be outside the

Fermi sphere, we can restrict k′ to

kF ≤ k′ ≤ ∣k⃗F + q⃗∣ or equivalently

EF ≤ εk⃗ ′ ≤
h̵2

2m(q⃗ + k⃗F )2.

k + q

q k

q < 2kF

(ii) q > 2kF :

All states inside the Fermi sphere

are possible final states and ∣q⃗−k⃗F ∣ ≤
k′ ≤ ∣q⃗ + k⃗F ∣, which is the “Fermi

sphere” about the point q⃗, respec-

tively EF < h̵2

2m(q⃗ − k⃗F )2 ≤ εk⃗ ′ ≤
h̵2

2m(q⃗ + k⃗F )2 for the energies.

q

k + q
k

q > 2k F

Defining the excitation energy as E(q⃗) ∶= εk⃗ ′ −EF we obtain the region where

excitations are possible as the shaded area in the figure below.
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LECTURE 1. THE HOMOGENEOUS ELECTRON GAS

E(q)

KF 2kF q

h̵2

2m(q⃗ − k⃗F )
2

h̵2

2m(q⃗ + k⃗F )
2

Until q = 2kF , the excitations are gapless, i.e. the minimal excitation energy

Emin = 0. For q > 2kF , there is a minimum excitation energy Emin(q⃗) = h̵2

2m(q⃗ −
k⃗F )2. The structure of the excitations is such that an electron is transferred

from the interior of the filled Fermi sphere to its outside, leaving a hole at k⃗ in

the Fermi sphere. We thus call the excitations of the Fermi sphere particle-hole

pairs. It is important to understand that this is more than just a name. In fact,

the dynamics of the “hole” must be taken into account. The reason is that in

the ground state for every k⃗ occupied there is another occupied state with −k⃗,

which implies that the total momentum K⃗ = 0. An excited state then has an

electron in state k⃗ ′∣ > kF and a “lonely” electron at −k⃗ in the Fermi sphere.

Therefore the total momentum now is K⃗ = k⃗ ′+(−k⃗) = q⃗. We thus formally need

the electron at −k⃗. However, the tradition is to rather work with the hole at

+k⃗ instead, which is treated like a particle with charge +e and momentum −k⃗.

1.5 Finite temperatures

In contrast to T = 0, the properties of the Fermi gas at finite temperatures

will be influenced by the excited states. One also talks of thermal excitation of

particle-hole pairs in this connection. To describe the thermal effects, we need

the partition function or more precisely the probability for the realization of

a certain excited state. Let us take as example the expectation value of the

Hamilton operator, which for finite T leads to the internal energy. For our

jellium model we then have

U(T ) = ⟨Ĥe⟩T = ∑
k⃗σ

h̵2k2

2m
⟨ĉ†
k⃗σ
ĉ
k⃗σ

⟩T .
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1.5. FINITE TEMPERATURES

We thus need to evaluate the thermal expectation value ⟨ĉ†
k⃗σ
ĉ
k⃗σ

⟩T . The combi-

nation of creation and annihilation operator just represents the particle number

operator for the state with quantum numbers k⃗ and σ, and because fermions

can occupy each state at most once, 0 ≤ ⟨ĉ†
k⃗σ
ĉ
k⃗σ

⟩T ≤ 1 must hold, and we can

interpret this expectation value also as occupation probability of this particular

single-particle state. The result is usually derived in the course on statistical

mechanics and reads

⟨ĉ†
k⃗σ
ĉ
k⃗σ

⟩T = f(εk⃗) =
1

1 + eβ(εk⃗−µ)

the famous Fermi-Dirac distribution function in Fig. 1.1.

kBT

µ
0

1

f(ε)

ε

T = 0

T > 0

Figure 1.1: Fermi function for T = 0 (black line) and T > 0 (red line). The states

in a region O(kBT ) around the chemical potential is redistributed according to

the red shaded area.

The energy now becomes

U(T ) = ∑
k⃗σ

εk⃗ f(εk⃗) .

The evaluation of this sum (or integral) is in general pretty cumbersome. How-

ever, because f(εk⃗) changes appreciably only across a region O(kBT ) one can

approximately evaluate the sum for kBT /EF ≪ 1 using the Sommerfeld expan-exercise

sion. The result is

u(T,n) = u(0, n) + π
2

3
(kBT )2N(EF ) +O(T 4) (1.8)
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LECTURE 1. THE HOMOGENEOUS ELECTRON GAS

From this result we can calculate the specific heat at constant volume as

cV = 1

V
(∂E(T,N)

∂T
)
N,V

= 2π2

3
k2

BN(EF ) ⋅ T . (1.9)

With N(EF ) = 3
4
n
EF

this can be cast into

cV (T ) = π
2

2
kBn

kBT

EF
∝ T

EF
∝m ⋅ T .

The latter proportionality, i.e. cV
T ∝

Figure 1.2: Low-temperature specific

heat of sodium.

m, is very important as it opens the

road to a phenomenological understand-

ing of the properties of the interacting

Fermi gas. The quantity

lim
T→0

cV (T )
T

=∶ γ

is called Sommerfeld coefficient of the

specific heat.

Let us add to this electronic contribu-

tion the part coming from lattice vi-

brations (which, as you now, behaves

as cV = β ⋅ T 3) to obtain for the total

specific heat of a crystal at low temperatures

cV (T ) = γ ⋅ T + β ⋅ T 3 .

Therefore, plotting
cV (T )
T versus T 2 will yield at the same time information

about the lattice part (slope) and the electronic part (offset).

Taking into account the fact, that the result (1.9) was derived for non-interac-

ting electrons in free space, it is quite astonishing that one actually finds such

a behavior in the experiment for a large number of metals. As an example Fig.

1.22 shows experimental data for the specific heat plotted versus T 2 for three

different sodium samples.

Another experimental probe is the magnetic response of a system. Electrons

carry charge and spin, so they couple in two ways to external magnetic fields.

First, through the classical replacement p⃗→ p⃗+ e
c A⃗(r⃗), where A⃗(r⃗) is the vector

potential. This term leads to the diamagnetic response, which we will ignore

here. The more important contribution comes from the spin, which we inclue

2Taken from D.L. Martin, Phys. Rev. 124, 438 (1961).
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1.5. FINITE TEMPERATURES

via the Pauli term ĤP = −2µB
h̵

ˆ⃗s ⋅ B⃗. The spin of the an electron in the state

k⃗ can be represented with creation and annihilation operators, and especially

the z-component becomes ŝk⃗,z = h̵
2
(n̂k⃗↑ − n̂k⃗↓). Assuming a magnetic field in

z-direction, we need to calculate the total magnetizationexercise

Mz =
2µB

h̵
∑
k⃗

⟨ŝk⃗,z⟩T = µB∑
k⃗

⟨n̂k⃗↑ − n̂k⃗↓⟩T = . . . = 3

2
N
µB

EF
Bz

and hence for the susceptibility

χP = Mz

Bz
= 3

2
N
µB

EF

The response of the electrons is thus positive, i.e. the Pauli term leads to a

paramagnetic response. The susceptibility is therefore also referred to as Pauli

paramagnetism. As for the specific heat, we also find χP ∝ 1
EF

∝m. It is thus

interesting to see what the Wilson ratio

RW ∶=
4π2k2

B

3(gµB)2

χP
γ

. (1.10)

is. Inserting the values for γ and χP for the non-interacting , we obtain RW = 1,

which presently does not tell much, except that both specific heat and Pauli

susceptibility are driven by the same physics, i.e. the Fermi-Driac distribution

of non-interacting particles.
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Fermi liquid theory
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2.1. BEYOND THE INDEPENDENT ELECTRON APPROXIMATION

2.1 Beyond the independent electron approximation

Up to now we have assumed that the electrons can be treated as non-interacting

particles (the so-called independent electron approximation). In the following

we will discuss some effects of the interaction and in particular how to take

them into account. We will not yet include the periodic lattice, but stay within

the free electron approximation.

The Hamiltonian of the free electron gas in second quantization reads

Ĥ = ∑
k⃗σ

h̵2k2

2m
ĉ†
k⃗σ
ĉ
k⃗σ
+ 1

2
∑
q⃗
∑
k⃗ k⃗ ′
σσ′

Vq⃗ ĉ
†
k⃗+q⃗σ

ĉ†
k⃗ ′−q⃗σ′

ĉ
k⃗ ′ σ′

ĉ
k⃗σ

(2.1)

where

Vq⃗ =
4π

V

e2

q2

is the Fourier transform of the Coulomb interaction. At first, the term q⃗ = 0

seems to be troublesome. However, it can be shown that it is cancelled by theexercise

positive background charge ensuring charge neutrality.

A first attempt to capture the effects of the interaction is within a Hartree-Fock

treatment. Within this approximation one finds

Ĥ → ĤHF = ∑
k⃗σ

Ek⃗ ĉ
†
k⃗σ
ĉ
k⃗σ

Ek⃗ = εk⃗ −∑
q⃗

Vq⃗f(Ek⃗+q⃗) =
h̵2k2

2m
− 2e2

π
kFF ( k

kF
) .

The function

F (x) = 1

2
+ 1 − x2

4x
ln ∣1 + x

1 − x
∣

is called Lindhard function. Its graph is shown in the left panel of Fig. 2.1, and

EHF
k /EF

0

1

0 1 2

dF
dx diverges

0 1 2

0

2

4

−2

F (x)

x k/kF

Figure 2.1: Lindhard function and Hartree-Fock dispersion.

the Hartree-Fock dispersion Ek⃗ as red curve in the right panel in comparison to
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LECTURE 2. FERMI LIQUID THEORY

the non-interacting dispersion included as black line. Note that we have elimi-

nated the “classical” charge-density interaction by using charge neutrality, i.e.

the renormalization of the dispersion is due to so-called exchange contributions

only and hence a pure effect of Pauli’s principle!

The exchange contribution to the Hartree-Fock energy can be rewritten as

∑
q⃗

Vq⃗f(Ek⃗+q⃗) = ∫
V

d3r
e

r
ρxc
k⃗
(r⃗)

ρxc
k⃗
(r⃗) = − e

V
∑
k′≤kF

e−i(k⃗
′−k⃗)⋅r⃗ .

The object ρxc
k⃗
(r⃗) is called exchange charge density and is non-local even for

the homogeneous electron gas. It can be evaluated to

ρxc
k⃗
(r⃗) = −3en

2

eikr

(kF r)3
[kF r cos (kF r) − sin (kF r)] .

A more intuitive quantity is the total exchange charge density obtained from

summing ρxc
k⃗
(r⃗) over k ≤ kF . The result is

⟨ρxc
k⃗
(r⃗)⟩ ∶= 1

V
∑

k≤kF ,σ
ρxc
k⃗
(r⃗) = −9ne

2

1

(kF r)6
[kF r cos (kF r) − sin (kF r)]2 .

It describes the average change of the charge density induced by an electron at

the origin in a distance r due to Pauli’s principle. Again it must be emphasized

that this is a purely quantum mechanical phenomenon! This exchange charge

density oscillates in a characteristic manner. These oscillations are caused by

the existence of a sharp Fermi surface and called Friedel oscillations.

For large r the exchange charge density ⟨ρxc
k⃗
(r⃗)⟩ goes to zero ∝ r−4. For small

r, on the other hand, we can expand the different parts and obtain

⟨ρxc
k⃗
(r⃗ → 0)⟩ ≈ −9en

2

1

(kF r)6
[kF r −

1

2
(kF r)3 − kF r +

1

6
(kF r)3]

2

= −1

2
en .

Thus, in the vicinity of a given electron, the “effective” charge density seen by

another electron is ρeff = ρ0+⟨ρxc
k⃗
(r⃗ → 0)⟩ ≈ en− 1

2en = 1
2en! This characteristic

reduction of the effective charge density is called exchange hole. In Hartree-

Fock theory one considers only contributions among one spin species. If one

takes into account the Coulomb correlations beyond Hartree-Fock, one obtains

due to the presence of the other spin species a further correlation hole −1
2en,

i.e. the effective electronic charge density in the vicinity of a given electron is

actually reduced to zero! Thus, in practice, every electron can be thought of

being “dressed” with an exchange-correlation hole it has to carry along during

17
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Figure 2.2: Exchange charge density ⟨ρxc
k⃗
(r⃗)⟩/n as function of kF ⋅ r.

its motion. Such a parcel will of course hinder the motion, and to an “outsider”

the electron will appear as having a larger mass. In this sense it will no longer

be the electron we know from free space, but some modified creature one calls

quasi electron or more general quasi particle.

The concept of quasi-particles is a very common and powerful one. In fact,

all “particles” you know (electrons, quarks, hadrons, mesons, photons, . . .)

are actually quasi-particles, because we never see them as completely isolated

individuals, but always in an interacting environment which usually completely

modifies their properties.

2.2 Landau’s Fermi liquid theory

The properties of the noninteracting electron gas can be summarized as follows:

It has a specfic heat cV (T ) = γT with a temperature independent Sommerfeld

constant γ, a magnetic Pauli susceptibility χP (T ) =const. and a bulk modulus

BT (T ) =const. for kBT ≪ EF . As already noted, another interesting quantity

is the Wilson ratio

RW ∶=
4π2k2

B

3(gµB)2

χP
γ

. (2.2)

For the noninteracting electron gas we have RW = 1.

The astonishing experimental observation now is that for many metallic solids

at low temperature one again finds the same behavior for the electronic con-

18
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tributions to specific heat, susceptibilty and bulk modulus, together with a

Wilson ratio RW =O(1). It thus seems that in spite of the long-ranged and

strong Coulomb repulsion among the electrons the low-temperature properties

can be well approximated by ignoring the Coulomb interaction.

A partial solution to this puzzle is provided by inspecting the response of the

electron gas to an external charge or electrostatic potential. With standard

arguments from electrostatics such an external charge will, due to the mobility

of the electrons, lead to a total charge density ρ(r⃗) = ρext(r⃗) + ρind(r⃗) and a

total electrostatic potential Φ(r⃗) = Φext(r⃗)+Φind(r⃗), which are related through

Poisson’s equation. For a homogeneous and isotropic system, the total and

external potential are related via a dielectric function according to

Φ(r⃗) = ∫ d3r ε(r⃗ − r⃗ ′)Φext(r⃗ ′) .

After a spatial Fourier transformation this relation becomes

Φext(q⃗) = ε(q⃗)Φ(q⃗) .

In Fourier space the Poisson equations for the external and total charge have the

form1 q2 Φext(q⃗) = 4π ρext(q⃗) and q2 Φ(q⃗) = 4π ρ(q⃗). Together with ρext = ρ−ρind

one can identify

ε(q⃗) = 1 − 4π

q2

ρind(q⃗)
Φ(q⃗)

.

Thus, what we need is a relation between the total potential and the induced

charge density.

To this end we try to approximately solve the Schrödinger equation for our test

charge in the presence of the total electrostatic potential, i.e.

− h̵
2

2m
∇⃗2ψi(r⃗) − eΦ(r⃗)ψi(r⃗) = εiψi(r⃗) .

To proceed we assume that Φ(r⃗) (and consequently also ρ(r⃗)) varies only little

over atomic length scales as shown in Fig. 2.3, i.e. we assume that ∣∇⃗2Φ∣ ≪ ∣∇⃗2ψi∣
and Φ(r⃗) ≈ Φ(R⃗) within the small but macroscopic volume element ∆V . In

this case we can approximate the solution of the Schrödinger equation by plane

waves with a position dependent dispersion

εk⃗(R⃗) = h̵
2k2

2m
− eΦ(R⃗) .

This dispersion leads to a position dependent particle density

n(R⃗) = 1

V
∑
k⃗

f (εk⃗(R⃗))

1Remember: ∇⃗2 FT
Ð→ −q2.
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r⃗

∆V

R⃗

Figure 2.3: Macroscopic versus microscopic structure

and a corresponding charge density ρ(R⃗) = −en(R⃗). The induced charge density

then becomes ρind(R⃗) = −en(R⃗) + en0, where

n0 =
1

V
∑
k⃗

f ( h̵
2k2

2m
) .

We then obtain from a Taylor expansion with respect to φ

ρind(R⃗) = −e 1

V
∑
k⃗

[f ( h̵
2k2

2m
− eΦ(R⃗)) − f ( h̵

2k2

2m
)]

= −e2∂n0

∂µ
Φ(R⃗) +O(Φ2) .

After Fourier transformation with respect to R⃗ we insert this into the formula

for the dielectric function to obtain the Thomas-Fermi dielectric function

ε(q⃗) = 1 + 4πe2

q2

∂n

∂µ

= 1 + (qTF
q

)
2

(2.3)

q2
TF = 4πe2∂n

∂µ
(2.4)

with the Thomas-Fermi wave vector qTF . Note that we have neglected all

contributions from short length scales, i.e. possible modifications for large wave

vectors.

As a special case let us calculate the effective potential of a point charge Q with

Φext(q⃗) = 4πQ

q2
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to obtain

Φ(q⃗) = 1

ε(q⃗)
4πQ

q2
= 4πQ

q2 + q2
TF

.

Note that Φ(q⃗) now is finite for q⃗ → 0. Furthermore, transformed into real

space, we find

Φ(r⃗) = Q
r
e−qTF r

for the potential, i.e. a short ranged Yukawa potential. We may even evaluate

the expression for qTF for kBT ≪ EF to obtain

q2
TF

k2
F

= 4

π

1

kFaB
= O(1) .

Thus qTF ≈ kF , and the range of Φ(r⃗) is only sizeable over distances aB.

This peculiar property of the electron gas is called screening and very effi-

ciently cuts off the range of the Coulomb interaction, even among the electrons

themselves.2 Nevertheless, the remaining short-ranged effective repulsion still

poses a problem, because in its presence a single-particle state ∣nk⃗σ⟩ is not an

eigenstate of the system, but will evolve in time under the action of the total

Hamiltonian. In general, one can identify a time scale τ , the lifetime, after

which the state ∣nk⃗σ(t)⟩ has lost all “memory” of its initial form.

After this discussion we can now give an operational definition, under what

conditions it makes sense at all to talk of electrons: When τ → ∞ or at least

τ ≫ relevant time scales, the state ∣nk⃗σ(t)⟩ ≈ ∣nk⃗σ(0)⟩ is called quasi-stationary.

We thus need an idea of the lifetime τ of a single-particle state in the presence

of the Coulomb interaction. To this end we put an electron in a state close

to the Fermi surface, i.e. with an energy εk⃗ > EF . This electron can interact

with a second electron just below the Fermi energy, leading to an excited state

where the two electrons must have energies just above the Fermi energy (Pauli

principle). If we denote with εi = εk⃗i − EF the energies relative to the Fermi

energy, energy conservation requires ε3 + ε4 = ε1 − ∣ε2∣ ≥ 0 or ∣ε2∣ ≤ ε1. Therefore,

the fraction of electrons in the Fermi volume, that can actually interact with

an additional electron with energy slightly above the Fermi energy, can be

estimated as

δi ≈ volume of Fermi sphere in [−ε1,0]
volume of Fermi sphere

= V (EF ) − V (EF − ε1)
V (EF )

= 1 − V (EF − ε1)
V (EF )

= 1 − (EF − ε1
EF

)
3/2

≈ 3

2

ε1
EF

≪ 1 ,

2This is not a trivial statement, but must (and can) be actually proven by inspecting the

interaction energy between two electrons.
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where we used V (ε) ∼ k3 ∼ ε3/2. In particular, for ε1 → 0 the phase space for

interactions vanishes, i.e. for the state ε1 the liftime τ → ∞. As for the final

states after the interaction process 0 ≤ ε3+ε4 ≤ ε1 must hold and ε1 → 0, we may

approximately assume ε3 ≈ ε4 ≈ ε1/2,and hence find as phase space fraction for

final states of the interaction process

δf ≈
3

2

ε3
EF

∼ ε1
EF

.

Taking together, the total phase space for an interaction process becomes

δ ∼ ( ε1
EF

)
2

.

If we take finite temperature into account, the Fermi surface becomes “soft” in

a region O(kBT ) around the Fermi energy, and the previous estimate must be

modified to

δ ∼ a( ε1
EF

)
2

+ b(kBT

EF
)

2

.

Using Fermi’s golden rule, we can estimate the decay rate or equivalently the

inverse lifetime of an additional electron placed into a state close to the Fermi

surface according to

1

τ
∼ δ ∣V (q⃗)∣2 ∼ (kBT

EF
)

2

∣V (q⃗)∣2 ,

where q⃗ denotes a typical momentum transfer due to the interaction. For the

bare Coulomb interaction one then finds 1
τ ∼ T 2

q2
, which is indetermined in the

limit T → 0 and q → 0. However, for the screened Coulomb interaction we have
1
τ ∼

T 2

q2+q2TF
, i.e. τ ∼ 1/T 2 →∞ as T → 0.

For non-singular interactions, the concept of single-particle states

remains valid in a quasi-stationary sense for energies at the Fermi

surface and low temperatures.

Based on this observation, Landau 1957 made the suggestion that the low-

energy excitations of the interacting Fermi gas can be described by quasi-

stationary single-particle states ∣nk⃗(t)⟩ that evolve adiabatically3 from corre-

sponding states ∣n(0)
k⃗

⟩ of the noninteracting Fermi gas. However, because these

quasi-stationary states are not true eigenstates of the interacting system, one

cannot use the notion of “electrons” in association with them any more. Thus

3i.e. one switches on the interaction from t = −∞ to t = 0 sufficiently slow (for example as

eηt) and assumes that the state always is uniquely indentifyable with ∣nk(t = −∞)⟩.
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Landau further suggested to call the interacting Fermi system with these prop-

erties a Fermi liquid and the objects described by the quasi-stationary states

quasi electrons or more general quasi particles. For these quasi particles Landau

proposed the following axioms:

• Quasi particles have a spin s = h̵/2, i.e. are Fermions.

• Quasi particles interact (Landau quasi particles).

• The number of quasi particles equals the number of electrons (uniqueness).

In particluar the last axiom means that the particle density n = N/V and conse-

quently kF = (3π2n)3/2
remains unchanged. This observation can be rephrased

as

The volume of the Fermi body is not changed by non-singular

interactions (Luttinger theorem).

Let us discuss the consequences of the concepts of quasi particles. First, we

note that for the noninteracting electron gas we have a distribution function

f(εk) ≡ n
(0)
kσ , the Fermi function. With this function we can write the ground

state energy of the system as

EGS = ∑
k⃗σ

εk n
(0)
kσ ,

while for the system in an excited state we will in general have a different

distribution nk and

E = ∑
k⃗σ

εk nkσ .

In particular, if we add or remove one electron in state k0, we have δnkσ ∶=
nkσ − n

(0)
kσ = ±δk,k0 and δE = E −EGS = εk0δk,k0 . Therefore

δE

δnkσ
= εk .

As the quasi particles are objects that evolve in one-to-one correspondence from

the free particles of the electron gas, we add another axiom for the interacting

system, namely

• There exists a distribution function nk⃗σ such that the energy of the system

can be written as a functional E[nk⃗σ] of this function. In particular, there

exists a gound-state distribution function n
(0)
k⃗σ

with EGS = E[n(0)
k⃗σ

]. The

low-energy excitations are characterised by deviations δnk⃗σ = nk⃗σ − n
(0)
k⃗σ

,
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∣δnk⃗σ ∣ ≪ 1 from the ground state distribution and a corresponding change

of energy

δE[nk⃗σ] = E[nk⃗σ] −E0 = ∑
k⃗σ

εk⃗σδnk⃗σ +
1

2
∑
k⃗σ

∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗σδnk⃗ ′σ′ + . . .

(2.5)

in the sense of a Volterra expansion (= Taylor expansion for functionals).

From the first term in this expression we can define in correspondence to the

structure of the noninteratcing electron gas the energy of a quasi particle as

ε[nk⃗σ] ∶=
δE[nk⃗σ]
δnk⃗σ

If ε[nk⃗σ] ≡ εk⃗σ > EF , we talk of a quasi particle, in the other case of a quasi

hole. The convention is to drop the word “quasi” and talk of particles and holes,

always keeping in mind that these notions are meant in the sense of Landau’s

axioms.

The determination of the distribution function, based on general thermody-

namic principles and the expansion (2.5), is somewhat tedious. The final result,

however, looks quite intuitive and reasonable. It reads

nk⃗σ = [1 + exp{β(εk⃗σ − µ)}]
−1

and formally looks like the Fermi function. In reality it however is a very

complicated implicit equation, as εk⃗σ = ε[nk⃗σ] is a (usually unknown) functional

of the distribution function.

Let us now concentrate on the ground state, where we have ε
(0)
k⃗σ

∶= ε[n(0)
k⃗σ

].
We can then define a group velocity for the particles in the usual way as

v⃗k⃗σ ∶= ∇⃗k⃗ε
(0)
k⃗σ

. To keep things simple we procced without external magnetic

field, ignore spin-orbit coupling and assume an isotropic system. In this case

everything depends on k only, and in particular v⃗k⃗σ = vk
k⃗
k . For4 k = kF we now

define

vkF =∶ h̵kF
m∗

ε
(0)
k =∶ µ + h̵vF (k − kF ) .

4Remember: kF is the same as for the noninteracting system!
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The constant m∗ introduced in this way is called effective mass of the particles.

Having an explicit form for the dispersion, we can now also calculate the density

of states as

N(ε) = 1

V
∑
k⃗

δ(ε(0)k − µ − ε)

= ∫
d3k

(2π)3
δ(ε(0)k − µ − ε) = 1

h̵vF
∫

k2dk

2π2
δ(k − k0)∣k0=kF+ε/(h̵vF )

= 1

2π2h̵vF
(kF +

ε

h̵vF
)

2

.

The convention is such that ε = 0 represents the Fermi energy. In particular,

for the density of states at the Fermi energy one then finds

N(0) =
k2
f

2π2h̵vF
= m

∗kF
2π2h̵2

= m
∗

m
N (0)(EF ) .

The second term in the expansion (2.5) defines the quasi particle interaction

fk⃗σ;k⃗ ′σ′ ∶=
δ2E[nk⃗σ]
δnk⃗σδnk⃗ ′σ′

.

An obvious question is how important this part actually is. To this end let us

consider a variation in the ground state energy

δE = δε − µδn

= ∑ k⃗σ (ε(0)
k⃗σ

− µ) δnk⃗σ +
1

2
∑
k⃗σ

∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗σδnk⃗ ′σ′ + . . .

As we are interested in low energy excitations, we have ∣ε(0)
k⃗σ

− EF ∣ ≪ EF and

may assume

ε
(0)
k⃗σ

−EF
EF

∝ δnk⃗σ

to leading order, respectively (ε(0)
k⃗σ

− EF )δnk⃗σ =O(δn2). On the other hand,

the “interaction term” is O(δn2) by construction, and thus of the same order.

Consequently, both terms are actually important for the consistency of the

theory. Therefore, we will in general have to deal with a renormalised particle

energy

εk⃗σ = ε
(0)
k⃗σ

+ ∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗ ′σ′ .

Due to isotropy and without spin-orbit interaction the interaction can only

depend on the relativ orientation of k⃗ and k⃗ ′ respectively σ and σ′. Moreover,
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for Fermions all the action is concentrated to within a small shell around the

Fermi energy, and thus k⃗ ⋅ k⃗ ′ ≈ k2
F cosϑ. We can then define

fSkk′ ∶= fk⃗↑;k⃗ ′↑ + fk⃗↑;k⃗ ′↓ spin-symmetric interaction,

fAkk′ ∶= fk⃗↑;k⃗ ′↑ − fk⃗↑;k⃗ ′↓ spin-antisymmetric interaction.

As fαkk′ depends only on cosϑ, we can further expand it into Legendre polyno-

mials according to

fαkk′ = f
α
k,cosϑ =

∞
∑
l=0

fαl Pl(cosϑ)

and finally obtain

fk⃗σ;k⃗ ′σ′ = 1

2VN(0)

∞
∑
l=0

(FSl + σ ⋅ σ′ FAl )Pl(cosϑ) . (2.6)

The quantities Fαl ∶= VN(0)fαl are called Landau parameters. Note that by

definition they are dimensionless.

We now are ready to calculate physical quantities.

1. Let us start with the specific heat, which is defined via

cV = 1

V
(∂E
∂T

)
N,V

= 1

V
∑
k⃗σ

⎡⎢⎢⎢⎢⎣
ε
(0)
k⃗σ

+ ∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗ ′σ′

⎤⎥⎥⎥⎥⎦

∂nk⃗σ
∂T

.

As the second part is by construction of at least O(δn) =O(T ), we can

stick to the first as T → 0. This leads to5

cV = γT

γ = π2

3
k2

BN(0) = m
∗

m
γ(0) .

2. A second interesting quantity is the compressibility defined as

κ ∶= − 1

V

∂V

∂p
, p = −∂EGS

∂V
.

With some manipluations this can be cast into the form

κ = 1

n2

∂n

∂µ

5The calculation is identical to the one for the electron gas.

26



LECTURE 2. FERMI LIQUID THEORY

This result is again quite reasonable, as the compressibility is something

that tells us how easy it is to make the system more dense or how easy it

is to add particles to the system. Both are related to the density n, and

a change in particle number is regulated by the chemical potential.

We thus have to calculate

δn = 1

V
∑
k⃗σ

δnk⃗σ .

From the definition of the quasi particle energy we can now infer

δnk⃗σ =
∂nk⃗σ

∂(εk⃗σ − µ)
(δεk⃗σ − δµ)

or

δn = 1

V
∑
k⃗σ

(−
∂nk⃗σ
∂εk⃗σ

)(δµ − δεk⃗σ) .

Now the quasi particle interaction becomes important. The change in the

energy is given by

δεk⃗σ = ∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗ ′σ′ .

Furthermore, as we vary the chemical potential, the resulting variations

are better isotropic and spin independent. We therefore can conclude

that from the Landau parameters only FS0 can play a role, i.e. with the

definition (2.6)

δεk⃗σ =
FS0

2VN(0) ∑
k⃗ ′σ′

δnk⃗ ′σ′ =
FS0

2N(0)
δn .

Collecting all terms one arrives at

δn = (δµ − FS0
2N(0)

δn) 1

V
∑
k⃗σ

(−
∂nk⃗σ
∂εk⃗σ

) .

The k⃗ sum can be cast into an integral yielding

1

V
∑
k⃗σ

= (−
∂nk⃗σ
∂εk⃗σ

)∫ dεN(ε)(−∂n(ε)
∂ε

) T=0Ð→ 2N(0) .

We therefore find

δn = 2N(0)δµ − FS0 δn ⇔
δn

δµ
= N(0)

1 + FS0
.

For the noninteracting system one can do an equivalent calculation, which

leads to t compressibility κ(0) and with the relation between the density

of states of the Fermi liquid and the noninteracting gas we arrive at the

final expression
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κ = 1

n2

2

N(0)
1 + FS0 = m∗/m

1 + FS0
κ(0)

The important things are, that we again find a renormalisation ∝m∗/m
with respect the as for the specific heat. The novel aspect however is that

a further renormalisation occurs due to the quasi particle interactions. In

fact, dependeing on the sign of FS0 , this can lead to a sizeable change in

κ. Moreover, if FS0 ≤ −1, the above expression leads to a divergence of

κ or a negative sign. This immediately tells us that the Fermi liquid is

instable and the whole concept of quasi particles breaks down.

3. From the Fermi gas we know already that the susceptibility is another

important quantity. To calculate it we apply a small external field B⃗ = be⃗z
and obtain

δεk⃗σ = −gµBbσ
h̵

2
+ ∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗ ′σ′ .

Again we use

δnk⃗σ = (−
∂nk⃗σ
∂εk⃗σ

)(δµ − δεk⃗σ)

and observe that δµ cannot depend on the sign of b. Hence, δµ ∝ b2,

which we can ignore δµ in leading order in b. Therefore, δnk⃗σ ∝ δεk⃗σ and

then δnk⃗↑ = −δnk⃗↓. For a given σ the quasi particle interaction part then

becomes

∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗ ′σ′ = ∑
k⃗ ′

(fk⃗σ;k⃗ ′σ − fk⃗σ;k⃗ ′σ̄) δnk⃗ ′σ =
FA0
N(0)

δnσ .

Note that here naturally FA0 comes into play.

With this result we have

δnσ = 1

V
∑
k⃗

δnk⃗σ = −
1

V
∑
k⃗

(−
∂nk⃗σ
∂εk⃗σ

) δεk⃗σ

= −(−gµBbσ
h̵

2
+ FA0
N(0)

δnσ)N(0)

δnσ = gµBbσ
h̵

2

N(0)
1 + FA0

.

For the difference of up and down changes one then obtains

δn↑ − δn↓ =
gµBh̵

2

N(0)
1 + FA0

b

and with the magnetization given by m = gµBh̵
2 (n↑ − n↓) the expression

for the susceptibility becomes
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χP = ∂m
∂b

= (gµBh̵

2
)

2 N(0)
1 + FA0

= m∗/m
1 + FA0

χ
(0)
P

As for the compressibility, we again observe two distinct contributions to

the renormalisation with respect to the noninteracting electron gas: One

from the effective mass and a second from the quasi particle interactions.

If we calculate now the Wilson ratio (2.2), we find

RW = . . . = 1

1 + FA0
.

It is thus important to note that the Fermi gas value RW = 1 can easily be

changed to values of the order 1 . . .10 by the quasi particle interactions.

Furthermore, we again have to require FA0 > −1 in order for the Fermi

liquid concept to be valid. Otherwise we will in general observe a magnetic

instability.

4. Let us now ask how the effective mass is related to the true electron mass.

This can be achieved by invoking Galileian invariance, i.e. according to

Noether the conservation of the momentum of center of mass.

Let us assume we change the momentum of an electron by k⃗ → k⃗ + δk⃗.

The change in quasi particle energy induced by this “kick” is then

δεk⃗σ = ∇⃗k⃗εk⃗σδk⃗ + ∑
k⃗ ′σ′

fk⃗σ;k⃗ ′σ′δnk⃗ ′σ′ .

We now restrict to T = 0 and an isotropic system and use

∇⃗k⃗εk⃗σ ≈ ∇⃗k⃗ε
(0)
k⃗σ

= h̵2 kF
m∗

k⃗

k

δnk⃗σ = −∇⃗k⃗nk⃗σδk⃗

= −
∂nk⃗σ
∂εk⃗σ

∇⃗k⃗εk⃗σδk⃗

≈ δ (εk⃗σ − µ)
h̵2k⃗ ⋅ δk⃗
m∗ .

On the other hand, Galilein invariance enforces that for real particles

δεk⃗σ =
h̵2k⃗ ⋅ δk⃗
m

.

Now we invoke the fact that there must be a one-to-one correspondence

between real particles and quasi particles, i.e.

h̵2k⃗ ⋅ δk⃗
m

!= h̵
2k⃗ ⋅ δk⃗
m∗ + ∑

k⃗ ′σ′
fk⃗σ;k⃗ ′σ′δ (εk⃗ ′σ′ − µ)

h̵2k⃗ ′ ⋅ δk⃗
m∗

29



2.2. LANDAU’S FERMI LIQUID THEORY

For T = 0, we now can replace k⃗ ⋅ δk⃗ → kF
k⃗
k ⋅ δk⃗ and k⃗ ′ ⋅ δk⃗ → kF

k⃗ ′
k′ ⋅ δk⃗ =

cosϑ′ k⃗k ⋅ δk⃗. The latter is achieved by choosing a proper axis of reference

in the sum on k⃗ ′. We thus have to evaluate

∞
∑
l=0

FS0∫
dΩ′

4π
Pl(cosϑ′) cosϑ′

= 1

3
δl,1

= F
S
1

3

and finally

m∗

m
= 1 + 1

3
FS1

Again, we see that we have a stability criterion, namely FS1 > −3 in order

to have meaningful results. In general, the criterion is FSl > −(2l + 1)
respectively FAl > −(2l + 1).

When one of these criteria is violated, i.e. for one specific l ≥ 0 one has FS,Al ≤
−(2l + 1), one finds an instability of the Fermi liquid towards an ordered phase

with some order parameter respecting the particular symmetry. For example,

if FA0 → −1, we expect a magnetically ordered phase (ferromagntism), while for

FS0 → −1 charge separation occurs.

Note that these instabilities occur from within the Fermi liquid phase and usu-

ally do not destroy the quasi-particles, their physical properties rather are based

on these quasi-particles. There are other situations when interactions actually

prevent quasi-particles from forming. For example, as discussed in the moti-

vation of Landau’s concept, if an interaction channel becomes singular, it can

prevent the Fermi liquid from forming. A particular example are interacting

Fermions in one dimension, where interactions always lead to singular scat-

tering processes and no Fermi liquid forms. The actual low-energy properties

are of bosonic nature (spin- and charge-density waves), and the corresponding

low-energy model is the so-called Tomonaga-Luttinger model. Systems that

share its properties have been named Luttinger liquids by D. Haldane in the

early 1980’s. One-dimensional systems are hard to find and the unambiguous

experimental observation of a Luttinger liquid is still pending. Systems, that

do not obeye the Fermi liquid paradigms are however common nowadays, and

John Mydosh has given you an abundance of examples in the Heavy Fermion

compounds (see also the review [8]).

A problem in a theoretical description of these non-Fermi liquids found in Heavy

Fermions is that up to now no real microscopic model has been found that
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produces at least for a certain class of compounds the observed experiments.

Moreover, before one can even think of trying to set up a model one must first

understand the Fermi liquid phase, in particular its origin and what type of

physical parameters can lead to its destruction. This is the aim of my lecture:

To give you an idea of the fundamental physical concepts underlying the Heavy

Fermi liquid and how stable it is.

Up to now we discussed the Fermi liquid at T = 0 or for T → 0. How about

the behavior at finite T? For the independent electron gas, the relations were

valid up to O(T 2), the corrections can be calculated from higher order terms in

the Sommerfeld expansion. A similar procedure is possible here, too. However,

because the quasi-particle distribution function is not a simple Fermi function

any more, one can expect that corrections arise. The calculations are involved,

and the final results are

γ(T ) = γ(0) −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g3 T
2 lnT for d = 3

g2 T for d = 2

for the Sommerfeld coefficient and

χP (T ) = χP (0) −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c3 T
2 for d = 3

c2 T for d = 2

for the Pauli susceptibility. Note the characteristic non-analytic temperature

dependence in the Sommerfeld coefficient. This is a consequence of residual

interactions and absent in the independent electron gas. It has been neasured,

for example in 3He.

There are a lot of further consequences (see for example [8]) one can draw from

the Landau picture, most of which do not need any further parameters than the

effective mass and the first Landau parameters. As there is an abundance in

experiments in agreement with the predictions of Landau Fermi Liquid theory

for many materials, it is one of the best founded and experimentally verified

theories in condensed matter physics.

Nevertheless, a microscopic foundation based on the Hamiltonian of a solid is

yet another story. Using the tools of many-particle physics, one can actually

show that under certain conditions the Fermi liquid picture can be derived

[2, 5]. Although this is a particularly interesting calculation, we won’t be able

to follow it here. Let me just note for later reference that a very important

quantity in the game is the single-particle Green’s function

Gk⃗σ(z) ∶= Laplacetransform [i⟨[ĉ
k⃗σ

(t), ĉ†
k⃗σ

(0)]⟩]
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where the time dependence has to be calculated in Heisenberg picture. Espe-

cially interesting is the imaginary part

Ak⃗σ(ω) ∶= −
1

π
ImGk⃗σ(ω + i0

+)

where 0+ denotes an infinitesimal positive number. Ak⃗σ(ω) is called spectral

function and its k⃗-sum

N(ω) = 1

V
∑
k⃗

Ak⃗σ(ω)

the (local) density of states (DOS). Both are, although presently only abstract

objects, also accessible by experiment, namely with photoemmission – angle-

resolved (ARPES) for Ak⃗σ(ω)⋅ f(ω) and angle integrated (PES) for N(ω)⋅f(ω),
where f(ω) is Fermi’s function.

Using the tools of many-particle theory, one can calculate several interesting

properties from the spectral function respectively DOS, for example the mo-

mentum distribution function

nk⃗σ = ⟨ĉ†
k⃗σ
ĉ
k⃗σ

⟩ =
∞

∫
−∞

dωAk⃗σ(ω)
1

1 + eβω

A more accessible form for the Green’s function is obtained with Dyson’s equa-

tion as

Gk⃗σ(z) =
1

z + µ − εk⃗ −Σk⃗σ(z)
with an unknown function Σk⃗σ(z), the self-energy. This function contains all

information about interactions and is in general hard to calculate. However, in

the vicinity of the Fermi energy z = 0 and k⃗ = k⃗F one can in some cases expand

it in a Taylor series

Σk⃗σ(z) = Σk⃗σ(0) + z
∂Σk⃗σ(z)
∂z

∣
z=0

+ z2 ∂2Σk⃗σ(z)
∂z2

∣
z=0

+ . . .

For a Fermi liquid, the derivatives have the following properties, assuming z =
ω + i0+ with ω ∈R:

Σk⃗σ(0) ∈ R

∂Σk⃗σ(z)
∂z

∣
z=0

≤ 0

∂2Σk⃗σ(z)
∂z2

∣
z=0

= −i η with η > 0

One can obtain these results from inspecting the lowest-order contribution to

the self-energy, which for the imaginary part reads (abbreviating f(εk⃗) ≡ fk⃗)

ImΣk⃗σ(ω) ∝ −∑
k⃗1q⃗

∣V (q⃗)∣2 fk⃗1 (1 − fk⃗+q⃗) ⋅ (1 − fk⃗1−q⃗) δ(ω − (εk⃗+q⃗ + εk⃗1−q⃗ − εk⃗1))
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When we use the arguments from the motivation of Landau’s theory, we again

arrive at

ImΣk⃗σ(ω) ∝ −[ω2 + (πkBT )2]

Since one can intepret ImΣk⃗σ(ω) as scattering rate and hence as inverse life-

time, we thus have just reproduced in a more formal manner our initial result

about the life-time of single-particle states in an interacting Fermi system.

Inserting the results for the self-energy into the equation for the Green’s func-

tion, and introducing the abbreviations

Zk⃗F = 1 −
∂Σk⃗F σ

(z)
∂z

∣
z=0

≥ 1

ε̃k⃗ ∶= 1

Zk⃗F
εk⃗

µ̃ = 1

Zk⃗F
(µ −Σk⃗F σ

(0))

one obtains

Gk⃗σ(z) =
1

Zk⃗F

1

ω + µ̃ − ε̃k⃗ + i η ⋅ ω2
(2.7)

Note that the Fermi wave vector k⃗F is implicitely defined via

0 = µ − εk⃗F −Σk⃗F σ
(0)

Close to the Fermi energy ω = 0, the imaginary part becomes small and hence

the Green’s function becomes a simple pole with a weight Z−1
k⃗F

. For the inde-

pendent electron gas, the Green’s function has the form

G
(ni)
k⃗σ

(z) = 1

ω + µ − εk⃗ + i0+

and the interacting Green’s function is of similar structure. The weight of the

pole is however Z−1
k⃗F

< 1, i.e. the interacting Green’s function does not describe

a real particle, but a particle-like object which contains only a fraction of the

real particle. Hence we call the excitation described by this Green’s function

a quasi-particle and the factor Z−1 quasi-particle weight. Finally, close to the

Fermi wave vector, we may expand εk⃗ in a Taylor series as

εk⃗ ≈ µ +
h̵kF
m

∣k⃗ − k⃗F ∣

and hence

ε̃k⃗ ≈ µ̃ +
h̵kF

Zk⃗F ⋅m
∣k⃗ − k⃗F ∣
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From Landau’s phenomenological theory we however know that m∗ = Zk⃗F ⋅m
must hold, hence one also calls Zk⃗F the mass renormalization. Note that we

introduced a generalization of Landau’s concept: The renormalizations can be

k⃗-dependent.

With the approximate form (2.7) for the Green’s function, one can show that

the momentum distribution function nk⃗σ at T = 0 has a jump at k⃗F , namely

nk⃗↘k⃗F ,σ − nk⃗↗k⃗F ,σ =
1

Zk⃗F

The behavior is shown in the figure below. Note that no statement can be

0 kF k
0

0.5

1

n(
k)

Zk
-1

made about the curvature and actual values, except that for k⃗ → 0 we will have

n(k⃗) → 1.

To summarize, the fingerprints of a Fermi liquid from a microscopic point of

view are:

• At T = 0, one has a jump in the momentum distribution, with a height

< 1 which is the inverse effective mass of the Fermi liquid.

• The single particle self-energy in the Fermi liquid regime close to the

Fermi surface has the properties

Σk⃗σ(ω + i0
+) ≈ Σk⃗F σ

(0) −Zk⃗Fω − iηk⃗F ⋅ (ω
2 + π2k2

BT
2)

with Zk⃗F , ηk⃗F > 0.
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Heavy Fermions
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3.1. INTRODUCTORY REMARKS

3.1 Introductory remarks

In the lecture series by John Mydosh, you have learned about the Kondo effect

as a phenomenon that shows up in diluted magnetic alloys. It leads to a series

of very characteristic fingerprints like the resistivity minimum and a logarithmic

increase towards low temperatures or a Curie-like susceptibility with a negative

offset, which becomes a constant with unusually large value at low temperature.

There furthermore exists a characteristic temperature, the Kondo temperature

TK, below which these features occur, and which actually can serve as an energy

scale with all properties depending on the ratio T /TK, ω/kBTK, etc. only.

These properties were well-known in the early seventies already, and models that

showed similar behavior, the single-impurity Anderson model (SIAM) or the

single-impurity Kondo model (SIKM) have been established in the early sixties

already (see e.g. [4] for an overview; an older article, which gives a nice account

of the understanding in the mid-seventies is G. Gruner, and A. Zawadowski,

Magnetic impurities in non-magnetic metals, Rep. Prog. Phys. 37, 1497 (1974)).

In the late seventies and early eighties, another class of systems fascinated the

solid-state community: Based on Cerium, or later also Uranium, several com-

pounds where discovered, that could be characterized as Fermi liquids, but

they showed extremely enhanced Landau parameters. One could find effective

masses that were in excess of 1000me respectively Sommerfeld coefficients larger

than 1J/MolK2, whereas normal metals have values in the range of mJMolK2.

Due to the extremely large effective mass, one coined the name Heavy Fermions

(HF) for these compounds. The class of materials became even more exciting,

when Steglich discovered superconductivity in the HF compound CeCu2Si2.

This discovery was the more exciting, as (i) usually compounds with open d or

f -shells which form local moments do not become superconducting that eas-

ily, and (ii) the heavy quasi-particles obviously were the ones that are forming

the Cooper pairs, as is evident from the jump in the specific heat (see e.g.

F. Steglich, Superconductivity and magnetism in heavy-Fermion compounds, J.

Phys. Soc. Jpn. 74, 167 (2005)). Even more fascinating, sometimes the super-

conducting phase is either close or even coexisting with an antiferromagnetic

phase, with magnetic moments strongly reduced from the expected bare values

of a Cerium 4f moment. Finally, during the past 15 years many HF compounds

where found to be close to a quantum critical point, exhibiting rather peculiar

features as function of temperature.
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3.2 Connection of Heavy Fermions and Kondo effect

Since HF compounds contain open f -shells and hence local magnetic moments,

a connection of the HF behavior and the Kondo effect in dilute magnetic alloys is

suggestive. Are there any further hints that make this connection at least in the

Fermi liquid phase more manifest? For a variety of Cerium compounds one is in

Figure 3.1: Scaling of physical properties for (La,Ce)Pb3 respectively

(La,Ce)Pb3 (C.L. Lin, A. Wallash, J.E. Crow, T. Mihalisin, and

P. Schlottmann, Phys. Rev. Lett. 58, 1232 (1987); Y. Onuki, T. Komatsub-

ara, J. Magn. Magn. Mater 63-64 281 (1987)).

the fortunate situation that one can alloy them with Lanthanum, which does not

have a localized f -electron. If there is a one-to-one correspondence between the

HF state at full Cerium concentration and the Kondo effect at dilute, one should

actually observe a scaling when going from the pure Lanthanum compound

to the full Cerium. This is indeed the case, as becomes apparent from the

experiments on (La,Ce)Al3 respectively (La,Ce)Cu6 shown in Fig. 3.1. Thus,

at least as far as the Fermi liquid phase of HF compounds is concerned, the latter

seem to behave like a collection of Kondo impurities and for an understanding

of this phase it is obviously necessary to understand the properties of diluted

magnetic impurities in metals.

As already John Mydosh told you in his lectures, there are two fundamental

models that are used to theoretically describe magnetic impurities in metals [4].

The first is the single-impurity Anderson model

ĤSIAM = ∑
k⃗σ

εk⃗ ĉ
†
k⃗σ
ĉ
k⃗σ
+∑

σ

(εf +
U

2
f̂ †
σ̄f̂σ̄) f̂

†
σf̂σ +

1√
N
∑
k⃗σ

[Vk⃗ ĉ
†
k⃗σ
f̂σ + h.c.]

and the second the single-impurity Kondo model

ĤSIKM = ∑
k⃗σ

εk⃗ ĉ
†
k⃗σ
ĉ
k⃗σ
− ∑
k⃗1,k⃗2

∑
σ1,σ2

Jk⃗1k⃗2
ˆ⃗Sf ⋅ τ⃗σ1σ2 ĉ

†
k⃗1σ1

ĉ
k⃗2σ2

In both models, the first term describes a band of independent fermionic (quasi-

) particles with a dispersion εk⃗. These “conduction electrons” are coupled to
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some set of local degrees of freedom. For the Anderson model, a localized level

hosting Fermions, too; for the Kondo model we have only a quantum mechanical

spin ˆ⃗S. The important aspect in the Anderson model is that if two particles

are occupying this local level, one has to pay a penality U > 0, which is a

caricature of the Coulomb repulsion. Finally, the local subsystem talk to the

band electrons through a hybridization Vk⃗ respectively an exchange interaction

Jk⃗1k⃗2 . In the following, we will always assume Vk⃗ ≡ V respectively Jk⃗1k⃗2 ≡ J .

You have already learned that the Anderson model is a complicated beast, be-

cause in Hartee-Fock approximation one finds an unphysical phase transition,

which somehow has to be removed by “higher-order” processes in a perturba-

tional sense. Likewise, the Kondo Hamiltonian leads, in low-order perturbation

theory (see lectures buy John Mydosh or the book by A. Hewson [4]) to loga-

rithmically divergent contributions. This is the so-called Kondo problem.

Before we try to understand some of the physics better, let us discuss an in-

teresting limiting case for the Kondo model, viz the limit ∣J ∣ → ∞. One has to

distinguish two cases. For one, one can have J → +∞. In this case, the spin-flip

part in the exchange interaction becomes inoperative, and one can replace it

by the Ising variant. Under this circumstance, the action of the spin-exchange

is more or less a simple potential scattering for the conduction electrons with

a strong elastic potential. The situation is different when J → −∞. Then, the

system can get most out of the exchange interaction by forming a singlet be-

tween the local spin and some conduction electron at the impurity site. This

becomes a bound state and the said conduction electron, together with the local

spin, is removed from the system altogether. If one asks what the local density

of states for the band-electrons at the impurity site then will be, the answer is

quite simple: It must be zero, because the bound state has just removed the

corresponding states.

3.3 Some fundamental results

After these prelimiaries, let us try to understand what these limits have to do

with the actual physics of the Kondo model, and what the Kondo and Anderson

Hamiltonian have to do with each other. Let us begin with the first point. We

will use an argument based on the analysis by P.W. Anderson.1 The idea

goes as follows: We start with the original Kondo Hamiltonian and “remove”

the states at high energies by some procedure. This will in general lead to a

theory, where the removed high-energy states generate new interactions. An

1Poor man’s scaling, P.W. Anderson, Journal of Physics C: Solid State Physics 3, 2436

(1970).
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idea of the general structure can be obtained by reading papers on functional

renormalization. We now require that the interactions generated are of the

same form as the original ones, but with renormalized values. If we succeed,

we can continue with this procedure until we reach the Fermi energy and have

then the effective low-energy model at our hand.

To be precise, we assume that the energies of the

−D

δD

δD

D

EF

band states are originally located within an interval

[−D,D] around the Fermi energy. We now reduce

this interval to [−D + δD,D − δD] and try to in-

corporate the states in the intervals [−D,−D + δD]
respectively [D− δD,D] in effective interactions of a

Kondo model living on the reduced interval, see for

example the sjketch to the right.

This procedure can be fomrally be carried through

by inspecting the following classes of scattering processes,

�
σ1 σ1σ′1

q⃗σ′k⃗1σ k⃗2σ

�
σ1 σ1

q⃗σ′

σ′1

k⃗1σ1 k⃗2σ2

where the full lines with arrow denote band electrons from [−D + δD,D − δD]
and the dashes lines with arrows the ones from the “high energy states”. There

are several possible processes: Those that preserve the spin across the vertices

and those that produce spin-flips. The former are due to action of Ŝz on both

vertices, the latter if at least one vertex has an operator Ŝ± associated with it.

The internal momentum has to be chosen such that the integration only goes

over energies ∣ε∣ ∈ [D − δD,D]. For example, if we take the left process with Ŝ+

at the left and Ŝ− at the right vertex, the energy in the dashed internal line is

εq⃗ ≈D and evaluation of the diagram leads to

J2
⊥

E −D + εk⃗1
∣δD∣ Ŝ−Ŝ+ ĉ†

k⃗1σ1
ĉ
k⃗1σ1

while its exchange part on the right contributes

J2
⊥

E −D − εk⃗2
∣δD∣ Ŝ+Ŝ− ĉ†

k⃗2σ2
ĉ
k⃗2σ2

Note that we must allow for the exchange interaction to become anisotropic,

because otherwise we cannot recast the resulting interactions into the form of

the Kondo model. We thus are actually forced to study a more general Kondo
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model with

J →
⎛
⎜⎜
⎝

Jz 0 0

0 J⊥ 0

0 0 J⊥

⎞
⎟⎟
⎠

One can construct altogether eight different of such processes. To map the

resulting scattering matrix elements back to a Kondo-like Hamiltonian, one puts

E and εk⃗i onto the Fermi energy, and obtains with the requirement Jα → Jα+δJα
the following set of differential equations (for a more detailed derivation see

Anderson’s original paper or [4])

dJ⊥
d lnD

= 2NF JzJ⊥
dJz
d lnD

= 2NF J2
⊥

Note that by construction δD < 0!

This set of differential equations has the integral J2
⊥ − J2

z = c. Let us start with

the case Jz > 0, which corresponds to the ferromagnetic Kondo model. Since the

equation for Jz contains J2
⊥ > 0 on the right hand side, Jz will decrease and at

some point hit Jz = 0. What actually happens depends now on the magnitude

0
NF⋅Jz

NF⋅J⊥

Figure 3.2: Sketch of the low of the coupling constants for the Kondo model

from Anderson’s poor man’s scaling analysis.

and sign of J⊥. If 0 < J⊥ < Jz, the couplings J⊥ will also scale to zero, and hence

the effective low energy model for J > 0 is a model with the spin decoupled

from the conduction states; this situation is called weak-coupling fixed point. If

however J⊥ < 0, or 0 < Jz < J⊥, then J⊥ scales toward ∞ and “drags” Jz along
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towards −∞. The low energy model in this case, as well as for the case Jz < 0,

is the one with J → −∞, and hence an antiferromagnetic Kondo model with

infinitely strong exchange interaction. This situation is therefore called strong-

coupling fixed point. Note that however small ∣J ∣ is, as long as it is negative

(antiferromagnetic coupling), it will inevitably scale to the strong coupling fixed

point! The full flow of the coupling constants in the different regimes is shown

in Fig. 3.2.

The physics of the strong coupling fixed point, on the other hand, is the forma-

tion of a bound state and a renormalized Fermi liquid for the band electrons, as

discussed before. One can even define an energy scale D̄ = kBTK where the value

for say the renormalized NF ⋅ Jz exceeds a certain value and the flow predicted

by the low-order equations becomes meaningless. This “Kondo temperature”

is given by

TK ∝ exp [− 1

NF ⋅ ∣J ∣
]

where J < 0 denotes the initial value of the exchange interaction. This is just

the usual functional dependence of the Kondo temperature known from other

approaches.

Still, we are left with two rather different models and we must decide somehow

which one to use. Fortunately, there exists the work by Schrieffer and Wolff,2

where it is shown that both models are actually equivalent. The most fortunate

aspect however is, that this equivalence holds precisely in the most interesting

physical regime. This happens pretty rarely in the theory of such complex

systems.

Let us write the Anderson Hamiltonian as

ĤSIAM = Ĥ0 + V̂

where Ĥ0 collects the Hamiltonians of the conducution electrons and and the

local f -level, and V̂ denotes the hybridization between these subsystems. The

actual mapping of Anderson’s model to the Kondo model can be achieved by a

canonical transformation

ĤSIKM = eŜĤSIAMe
−Ŝ

where we require that V̂ = [Ĥ0, Ŝ]. With this requirement, we remove the

direct term V̂ from the transformed Hamiltonian, i.e. the leading order in the

hybridization now is O(V 2). The following Ŝ has the desired property:

Ŝ = V ∑
k⃗σ

[
1 − n̂f,−σ
εk⃗ − εf

+
n̂f,−σ

εk⃗ − εf −U
] ĉ†

k⃗σ
f̂σ − h.c.

2J.R. Schrieffer and P.A. Wolff, Phys. Rev. 149, 491 (1966).
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3.3. SOME FUNDAMENTAL RESULTS

The next non-vanishing term of O(V 2) in the expansion has a rather compli-

cated structure at first sight. In addition to the conduction electron term, there

appears

Ĥex = − ∑
k⃗1k⃗2

Jk⃗1,k⃗2
4

(∑
σσ′

f̂ †
σ τ⃗σσ′ f̂σ′) ⋅ (∑

σσ′
ĉ†
k⃗1σ
τ⃗σσ′ ĉ

k⃗2σ′
)

with

Jk⃗1,k⃗2 = V
2 [ 1

εk⃗1 − εf −U
+ 1

εk⃗2 − εf −U
− 1

εk⃗1 − εf
− 1

εk⃗2 − εf
]

a potential scattering term

Ĥps = ∑
k⃗1k⃗2σ

[Wk⃗1,k⃗2
+ 1

2
Jk⃗1,k⃗2 n̂f,σ] ĉ

†
k⃗1σ
ĉ
k⃗2σ

with

Wk⃗1,k⃗2
= V

2

2
[ 1

εk⃗1 − εf
+ 1

εk⃗2 − εf
]

a renormalized interaction

Ĥ ′
0 = ∑

k⃗σ

[Wk⃗,k⃗ +
1

2
Jk⃗,k⃗ n̂f,−σ] n̂f,σ

and a term that changes the occupancy of the f -orbital by two. We are in-

terested in the regime, where the f -occupancy ⟨n̂f ⟩ = 1, hence this term is of

no importance. Similarly, the interaction and potential scattering terms are

negligible or even zero. Thus, in this order and under the above assumption

we are left with the first term only, which is precisely the Kondo interaction.

Note that ⟨n̂f ⟩ = 1 enforces εf = −U/2 < 0 and εf + U = U/2 > 0. One can thus

be even more specific and state that the present second order will be a good

approximation to the Anderson Hamiltonian, provided that

πNFV 2 = Γ0 ≪ ∣εf ∣ , εf +U

This slightly generalized version also allows for εf ≠ −U/2, i.e. ⟨n̂f ⟩ ≠ 1. How-

ever, the derivation makes only sense if we at least assume that ∣⟨n̂f ⟩ − 1∣ ≪ 1.

The final step now is to restrict all band energies to the Fermi surface, i.e.

simply set εk⃗i = 0. Then, the exchange interaction becomes

J = −2V 2 [ 1

εf +U
− 1

εf
] = − 2V 2U

∣εf ∣(εf +U)

and particularly for the particle-hole symmetric case εf = −U/2 we arrive at

J = −8V 2

U
< 0
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LECTURE 3. HEAVY FERMIONS

As this is an antiferromagnetic exchange interaction, Anderson’s model in the

Kondo limit or strong coupling limit therefore exhibits the Kondo effect, and

one can even give an estimate for the Kondo temperature, namely

TK ∝ exp [− U

8NFV 2
] = exp[[− πU

8Γ0
]

That this is indeed true, and that even the prefactor is identical, we have learned

in the tutorials.

3.4 The local Fermi liquid

Let us now turn to actual results for the Anderson respectively Kondo model.

As far as the low-temperature or low-energy properties are concerned, we now

know that both are identical. Hence, I only make a distinction when it becomes

necessary. In Fig. 3.3 I show the behavior of several thermodynamic quantities,

10-6 10-4 10-2 100 102 104

T/TK

0

0.5

1

1.5

2

2.5

S/ln(2)
4TKχimp

TKγimp

RW

Figure 3.3: Entropy, local spin susceptibility and Sommerfeld coefficient for the

SIAM as function of T /TK. The triangles are the Wilson ratio.

namely the entropy, the local magnetic susceptibility mutliplied by TK and the

Sommerfeld coefficient, also scaled by TK. The latter are both of order one, i.e.

they show an enhancement relative to the non-interacting model (try and cal-

culate these quantities) by a common factor T−1
K . Within a Fermi liquid picture

this means that the effective mass is m∗ ∝ T −1
K . Furthermore, the Wilson ratio

RW has the value RW = 2 as T → 0, hence both γ and χ are enhanced due to

the same physical processes. The additional enhancement of χ points toward

a Landau parameter FA0 = −1
2 > −1, i.e. enhanced magnetic correlations in the
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3.4. THE LOCAL FERMI LIQUID

Fermi liquid. This is, up to now, consistent with our expectation from a Lan-

dau Fermi liquid. The only disturbing thing is that we only have an impurity

system here. P. Nozières was the first to view such behavior as generalizations

of the standard Fermi liquid theory for lattice models and coined the name local

Fermi liquid for it. Let us see if our other “fingerprints” are present, too. To

this end we need the self-energy of the local Green’s function for the f -electrons.

For a value U = 10πΓ0 we see the result in Fig. 3.5. Quite obvioulsy, there is
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Figure 3.4: Self-energy (real and imaginary part) of the SIAM for U = 10πΓ0

as function of ω/Γ0. Left: Overall view. Right: Magnified view around ω = 0.

a strong energy dependence to the self-energy, and in the blow-up in the right

panel one sees a nice parabolic structure at low energies in the imaginary part.

The real part definitely has a negative slope around ω = 0, but to what extent

it shows a linear behavior is not really evident. To this end we magnify the real

part around the Fermi energy even more, and obtain Fig. ??. Indeed, we have

a nice linear behavior for ω → 0, and a linear fit gives a nice agreement in this

region. The slope here is −49370, i.e. we expect an effective mass m∗ = 49371

or a Kondo scale TK ≈ 2 ⋅10−5Γ0. You may want to compare this with estimates

for TK you have obtained from say entropy.

This discussionshows nicely, that the Kondo model or Anderson model in the

Kondo regime indeed can provide a Fermi liquid with extremely enhanced Fermi

liquid parameters or extremely small energy scales. From this point of view, we

can indeed expect that using a model based on these impurity systems for the

Heavy Fermions can actually provide a good description, at least as far as the

Fermi liquid phase is concerned.
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Figure 3.5: Real part of the self-energy close to ω = 0. The dashed line is a

linear fit to the linear regime around ω = 0.

3.5 Heavy Fermions - a first attempt

Based on the previous discussion, what is a proper model for a theoretical

description of Heavy Fermion compounds? A reasonable extension of the SIAM

is obviously the model

ĤPAM = ∑
k⃗σ

εk⃗ ĉ
†
k⃗σ
ĉ
k⃗σ
+∑
iσ

(εf +
U

2
f̂ †
iσ̄f̂iσ̄) f̂

†
iσf̂iσ +

1√
N
∑
k⃗σ

[Vk⃗ ĉ
†
k⃗σ
f̂
k⃗σ
+ h.c.]

known as periodic Anderson model (PAM). The index i denotes the site R⃗i on

a suitable lattice. A similar periodic extension of the Kondo model is

ĤKLM = ∑
k⃗σ

εk⃗ ĉ
†
k⃗σ
ĉ
k⃗σ
− J ∑

i
∑
σ1,σ2

ˆ⃗Si ⋅ τ⃗σ1σ2 ĉ
†
iσ1
ĉiσ2

This model is usually referred to as Kondo lattice model (KLM) respectively

periodic Kondo model (PKM). Again, the index i labels the site in the lattice.

In contrast to the SIAM or SIKM, we do not have an exact or even reliable

numerical solution for the periodic versions. Over the past 20 years, some simple

approximate methods have been developed. A particular simple and at least

for T = 0 rather accurate method is the so-called slave-boson mean-field theory.

This theory works easiest in the limit U → ∞ of the PAM. One introduces for
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3.5. HEAVY FERMIONS - A FIRST ATTEMPT

each site R⃗i a boson b̂i and writes the PAM in the limit U = ∞ as3

ĤPAM = ∑
k⃗σ

εk⃗ ĉ
†
k⃗σ
ĉ
k⃗σ
+∑
iσ

εf f̂
†
iσf̂iσ +

V√
N
∑
k⃗σ

[ĉ†
k⃗σ
b̂†i f̂k⃗σ

+ h.c.]

together with a constraint

∑
σ

f̂ †
iσf̂iσ + b̂

†
i b̂i = 1

As long as we obeye this constraint on the operator level, one can indeed show

that the PAM and the slave-boson model are equivalent. A simple version

now is to replace b̂i → b ∈ R. and introduce the constraint in the Hamiltonian

via a Lagrange multiplier, which acts as an effective chemical potential. The

Hamiltonian then reads

ĤMF
PAM = ∑

k⃗σ

εk⃗ ĉ
†
k⃗σ
ĉ
k⃗σ
+∑
iσ

εf f̂
†
iσf̂iσ +

bV√
N
∑
k⃗σ

[ĉ†
k⃗σ
f̂
k⃗σ
+ h.c.]

−λ(∑
iσ

f̂ †
iσf̂iσ +Nb

2 − 1)

This Hamiltonian is a single-particle one an can be diagonalized immediately.

The result is that one obtains (i) a renormalized position ε̃f = +b2 for the f -level

and (ii) a rescaling of the hybridization V → bV . The mean-field parameter b

is given by b = W ⋅ exp [−π∣εf ∣2Γ0
], where Γ0 = πNFV 2 as before. On can now

interpret the objects described by the operators f̂
(†)
iσ as local quasiparticles and

can then for example calculate the band-structure for the model. The generic

result is shown in Fig. 3.6. One finds a rather characteristic structure, namely

hybridized bands close to the Fermi energy, with a gap of order TK between

them. Note that this picture remains true for the more elaborate slave-boson

verisons for finite U , too, and that then for the particle-hole symmetric case a

full gap occurs at the Fermi level. This situation is conventionally referred to

as Kondo insulator.

We are now nearly at the end of the possible discussions without a more elabo-

rate many-body technique. One particularly interesting feature, however, must

still be discussed, namely the question of magnetism in Heavy Fermions. Since

this quite frequently occurs in real compounds and especially often also drives

quantum critical begavior, understanding its origin is a rather important task.

There exisits a very simple argument due to Doniach (see for example Hewson

[4]). Namely, as is well known, the presence of local moments in a metal gives

rise to the sol-called RKKY interaction. This interaction is due to the response

3There also exist versions for finite U , but they are more complicated and would go beyond

the scope of this lecture.
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Figure 3.6: Bandstructure of the PAM in the slave-boson mean-field approx-

imation. Note that the f -level is the effective one, shifted above the Fermi

energy. The hybridization then leads to the picture of hybridized bands, with

a gap between these bands across the effective f -level position. If this position

is shifted to ω = 0, a gap of width TK arises, i.e. one finds a Kondo insulator.

of the electron gas and is proportional to J2, because for two moments involved

in the interaction process we have one factor of J coupling it to the conduction

electrons. This interaction tries to stabilize magnetism (the sign depends on the

band filling and can be both antiferro- and feromagnetic), and the energy scale

in a mean-field estimate is proportional to the exchange constant TN ∝K ∝ J2.

The formation of a magnetic ground state however needs the presence of local

moments. These are however screened by Kondo effect, which has a temper-

ature scale TK ∝ e−1/(NF ∣J ∣), assuming an antiferromagnetic Kondo exchange.

Thus, for small J , the Kondo screening is exponentially suppressed and mag-

netism will win, while for large J Kondo will eventually screen the moments

before magnetism sets in. From this argument it follows, that there should exist

a critical Jc,at which magnetism vanishes. This is a quantum phase transition!

You may wonder whether this can be achieved experimentally. The answer is

yes, namely by pressure. Increasing pressure will actually increase the overlap

of wave functions, hence the hybridization, and thus increase J . A system where

a transition from an antiferromagnet to a heavy Fermi liquid through external

pressure has been observed is actually CeCu6−xAux with x > 0.1 [8].
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3.6. DMFT TREATMENT OF THE PERIODIC KONDO MODEL

Any attempt to approximately solve either the Kondo or the Anderson model

in their periodic versions thus should be able to reproduce theses two effects:

The formation of a heavy Fermi liquid with hybridized bands near the Fermi

energy and the Doniach competition between magnetism of local moments and

the Kondo screening.

3.6 DMFT treatment of the periodic Kondo model

Slides will be provided later!
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