XV Training Course in the Physics of Strongly Correlated Systems
Vietri sul Mare (Salerno) Italy
October 4 -15, 2010
Lecture Topics and Background References
Professor Ole K. Andersen
Understanding the electronic structure of 3d-electron materials of recent interest, starting from LDA Wannier functions.
Lectures:
1. The single-particle picture. Periodic system of elements. Tight-binding
description of the band structure of solids [1]. L2O3
described in the dynamical-mean field approximation (DMFT) [3,4].
3. Transition-metal perovskites. Mott transition in a 3d(t2g)1
series; cation control [5]. Coulomb-enhanced spin-orbit coupling in the 4d(t2g)5
oxide Sr2RhO4 [6]. Pressure-induced metal-insulator
transition in the 3d(t2g)(eg)1 oxide LaMnO4
[7].
4. Trends in band structures of HTSC d9-h cuprates [8].
Superconductors from heterostructures of d7 nickelates? [9].
5. Band structure and itinerant magnetism of the new iron-pnictide and
chalcogenide superconductors [10].
References (most of these papers may be downloaded from
http://www.fkf.mpg.de/andersen/):Professor Adrian E. Feiguin
The density matrix renormalization group (DMRG) method and its time-dependent variants.
Lectures:
1. Exact diagonalization. Numerical Renormalization Group. Disentangling quantum
many body states: the Schmidt decomposition and the density matrix
transformation. The density matrix renormalization group method. Measuring
observables. Targeting multiple states. Calculating gaps. Extension to higher
dimensions. Quantifying entanglement
2. The wave-function transformation. Time evolution using DMRG. The
Suzuki-Trotter decomposition. Adaptive tDMRG. Time-targeting methods.
Time-evolution using the Krylov basis.
3. Applications of the tDMRG method. Calculating time-dependent correlation
functions. Quenches and entanglement growth. Thermo-field formalism. Quantum
purification. Evolution in imaginary time. Thermodynamics.
4. Matrix Product States and DMRG. MPS as a variational ansatz. The AKLT state.
Projected Entangled Pair States (PEPS) Infinite Time Evolving Block Decimation
method (iTEBD). Infinite size algorithms.
5. ALPS libraries. ALPS DMRG.
References:
1) S. R. White, Density matrix formulation for quantum renormalization
groups. PRL 69,2863 (1992).
2) S. R. White, Density-matrix algorithms for quantum renormalization groups.
PRB 48,10345 (1993)
3) U. SchollwThe density-matrix renormalization group. RMP 77, 259 (2005)
4) K. Hallberg, Density Matrix Renormalization: A Review of the Method and its
Applications. arXiv:cond-mat/0303557
5) R. Noack and S. Manmana, Diagonalization- and Numerical
Renormalization-Group-Based Methods for Interacting Quantum Systems. arXiv:cond-mat/0510321
6) Steven R. White and Adrian E. Feiguin, Real-Time Evolution Using the Density
Matrix Renormalization Group
Phys. Rev. Lett. 93, 076401 (2004)
7) A. J. Daley, C. Kollath, U. Schollwoeck, G. Vidal, Time-dependent
density-matrix renormalization-group using adaptive effective Hilbert spaces. J.
Stat. Mech.: Theor. Exp. (2004) P04005
8) G. Vidal, Efficient Simulation of One-Dimensional Quantum Many-Body Systems.
Phys. Rev. Lett. 93, 040502 (2004)
9) G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice Systems in
One Spatial Dimension. Phys. Rev. Lett. 98, 070201 (2007)
10) Adrian E. Feiguin and Steven R. White, Time-step targeting methods for
real-time dynamics using the density matrix renormalization group. Phys. Rev. B
72, 020404 (2005)
11) Adrian E. Feiguin and Steven R. White, Finite-temperature density matrix
renormalization using an enlarged Hilbert space. Phys. Rev. B 72, 220401 (2005)
12) Peter Schmitteckert, Nonequilibrium electron transport using the density
matrix renormalization group method. Phys. Rev. B 70, 121302 (2004)
13) F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Real-time simulations of
nonequilibrium transport in the single-impurity Anderson model. Phys. Rev. B 79,
235336 (2009)
14) Luis G. G. V. Dias da Silva, F. Heidrich-Meisner, A. E. Feiguin, C. A. Bins,
E. V. Anda, and E. Dagotto, Transport properties and Kondo correlations in
nanostructures: Time-dependent DMRG method applied to quantum dots coupled to
Wilson chains. Phys. Rev. B 78, 195317 (2008)
15) K. A. Al-Hassanieh, A. E. Feiguin, J. A. Riera, C. A. BAdaptive
time-dependent density-matrix renormalization-group technique for calculating
the conductance of strongly correlated nanostructures, Phys. Rev. B 73, 195304
(2006)
16) U. Schollwoeck, S. R. White, Methods for Time Dependence in DMRG. arXiv:cond-mat/0606018
17) U. Schollwoeck, The density matrix renormalization group in the age of
matrix product states. arXiv:cond-mat/1008.3477
18) F. Verstraete, D. Porras, J. I. Cirac, DMRG and periodic boundary
conditions: a quantum information perspective. Phys. Rev. Lett. 93, 227205
(2004)
19) F. Verstraete, J.I. Cirac, Matrix product states represent ground states
faithfully. Phys. Rev. B 73, 094423 (2006)
20) F. Verstraete, M. M. Wolf, D. Perez-Garcia, J. I. Cirac, Criticality, the
area law, and the computational power of PEPS. Phys. Rev. Lett. 96, 220601
(2006).
21) D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix Product State
Representations. Quantum Inf. Comput. 7, 401 (2007)
22) F. Verstraete, J.I. Cirac, V. Murg, Matrix Product States, Projected
Entangled Pair States, and variational renormalization group methods for quantum
spin systems. Adv. Phys. 57,143 (2008)
Professor Hans R. Ott
Experimental approaches to strong correlations.
Lectures topics:
Fermi liquid, normal liquid 3He, Kondo (dilute and lattice), heavy-electron
metals, non Fermi-liquid aspects
Superconductivity (key properties and related experiments)
Unconventional Superconductivity (examples and experiments)
Physics of low-dimensional systems (examples and experimental approaches)
Professor Michael Potthoff
Variational principles for strongly correlated Fermi systems.
Lectures:
1. Correlated electrons: Basic models and methods [1,2,3]
a) Electron correlations
b) Second quantization
c) Exact diagonalization
2. Variational wave functions [4,5]
a) Ritz variational principle
b) Hartree-Fock approximation
c) Gutzwiller wave function and Mott transition
d) Variation of matrix-product states
e) Variational density matrix
f) General approximation strategies
3. Green functions and perturbation theory [1,2,3,6]
a) Diagrammatic perturbation theory
b) Properties of Green functions
c) Luttinger-Ward functional
d) Dynamical functionals
4. Dynamical variational approximations [7,8,9,10]
a) Cluster-perturbation theory
b) Variational cluster approach
c) Dynamical mean-field theory
d) Cluster mean-field theories
5. Applications [4,6,7,8]
a) Collective magnetism
b) Mott transition
c) High-Tc superconductivity
d) Luttinger sum rule
References:
[1] J.W. Negele and H. Orland: "Quantum Many-Particle Systems" (Addison-Wesley)
[2] A.A. Abrikosow, L.P. Gorkov and I.E. Dzyaloshinski: "Methods of Quantum
Field Theory in Statistical Physics" (Prentice-Hall)
[3] A.L. Fetter, J.D. Walecka: "Quantum Theory of Many-Particle Systems"
(McGraw-Hill)
[4] F. Gebhard: "The Mott Metal-Insulator Transition" (Springer)
[5] U. Schollwoeck: "The density-matrix renormalization group in the age of
matrix product states", arXiv:1008.3477
[6] M. Potthoff: "Non-perturbative construction of the Luttinger-Ward
functional", Condens. Mat. Phys. 9, 557 (2006), cond-mat/0406671
[7] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg: "The Local Impurity Self
Consistent Approximation (LISA) to Strongly Correlated Fermion Systems and the
Limit of Infinite Dimensions", Rev. Mod. Phys., 68, 13 (1996), cond-mat/9510091
[8] Th. Maier, M. Jarrell, Th. Pruschke, M.H. Hettler: "Quantum Cluster
Theories", Rev. Mod. Phys. 77, 1027
Training: Blackboard discussions. Problem solving.