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LDA+U method applications

• Mott insulators

• Charge order: Fe3O4

• Spin order: calculation of exchange interaction 
parameters in  CaVnO2n+1 

• Orbital order: KCuF3, LaMnO3

• Charge and orbital order: Pr0.5Ca0.5MnO3

• Low-spin to high-spin transition:Co+3 in LaCoO3

• Stripe phase of cuprates



LDA+U method applications

Mott insulators that are small gap semiconductors 
or even metals in LSDA are correctly reproduced in LDA+U
as wide gap magnetic insulators with well localized d-electrons

V.Anisimov et al, Phys.Rev. B 44, 943 (1991)



LDA+U method applications

The density of states for ferromagnetic Gd
metal from LDA+U calculation and results
of BIS (bremsstrahlung isochromat
spectroscopy) and XPS (x-ray 
photoemission spectroscopy) experiments.

Antiferromagnetic Mott insulator
CaCuO2 (in LDA nonmagnetic metal)



Charge order in Fe3O4

half of the octahedral positions is occupied by Fe+3 and other half by Fe+2.

V.Anisimov et al, Phys. Rev.B 54, 4387 (1996)

Fe3O4 has spinel
crystal structure

one Fe+3 ion in tetrahedral position (A)

two Fe+2.5 ions in octahedral positions (B)

Below TV=122K  a charge ordering happens Verwey transition

Simultaneous metal-insulator transition:



LDA and charge order problem
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Charge disproportionation in LSDA is unstable due to self-interaction problem

in LDA+U self-interaction is explicitly canceled
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LSDA and LDA+U  results for Fe3O4

metal insulator



Fe3O4

Charge and orbital order 
in experimental low-
temperature monoclinic 
crystal structure Fe3O4

I.Leonov et al, 
PRL93,146404 (2004)



Fe3O4

Charge and orbital order in experimental low-temperature 
monoclinic crystal structure Fe3O4



Exchange interactions  in layered vanadates

• n=3: CaV3O7 has unusual long-range spin order 

• n=4: CaV4O9 is a frustrated (plaquets) system with a spin gap value 107K 

• n=2: CaV2O5 is a set of weakly coupled dimers with a large spin gap 616 K 

• isostructural MgV2O5 has very small spin gap value < 10K

V.Anisimov et al, Phys.Rev.Lett. 83, 1387 (1999)

Fully ab-initio description of magnetic properties

LDA+U calculations:
eigenfunctions and 

eigenvalues

Exchange couplings
calculations using

LDA+U results

Heisenberg
model is solved

by QMC

CaVnO2n+1 (n=2,3,4) systems show a large variety of magnetic properties:



Crystal structure and orbitals 

V+4 ions in d1 configuration.

Oxygen atoms form pyramids with V atoms inside them.

Crystal structure of CaVnO2n+1
is formed by VO5 pyramids 

connected into layers.

The occupied dxy-orbital of  V+4 ions in CaV3O7



Exchange couplings scheme 

V atoms represented by large circles with different colors have different z-coordinate
Oxygen atoms are shown by small circles 
Long range magnetic structure of CaV3O7 is depicted by white arrows

The basic crystal structure and the notation of exchange couplings in
CaV2O5 and MgV2O5 CaV3O7 CaV4O9 



QMC solution of Heisenberg model 

Comparison of the calculated and measured susceptibility



Orbital order in KCuF3

with Jahn-Teller distorted CuF6 octahedra.
KCuF3 has cubic perovskite

crystal structure



Orbital order in KCuF3

hole density of the same symmetry

A.Lichtenstein et al, Phys. Rev.B 52, R5467 (1995); J.Medvedeva et al, PRB 65,172413 (2002)

In KCuF3 Cu+2 ion has 
d9 configuration

with a single hole in eg doubly degenerate subshell.

Experimental crystal structure

antiferro-orbital order

LDA+U calculations for undistorted
perovskite structure



Cooperative Jahn-Teller distortions in KCuF3

LSDA gave cubic perovskite crystal 
structure stable in respect to Jahn-
Teller distortion of CuF6 octahedra

Only LDA+U produces 
total energy minimum 
for distorted structure

Calculated 
exchange couplings:

c-axis 17.5 meV
ab-plane –0.2 meV
One-dimensional 
antiferromagnet



Orbital order in Pr1-xCaxMnO3 (x=0 and 0.5)

Orbital order for partially filled eg shell
of Mn+3 ion in PrMnO3 in a crystal structure
without JT-distortion from LDA+U

with tilted and rotated Jahn-Teller distorted MnO6 octahedra.
PrMnO3 has orthorhombic  perovskite crystal structure



Pr0.5Ca0.5MnO3

experimental magnetic and 
charge-orbital order

Orbital order for partially filled eg shell
of Mn+3 ion in Pr0.5Mn0.5O3 in a crystal structure
without JT-distortion from LDA+U

V.Anisimov et al, Phys.Rev.B 55, 15 494 (1997); M.Korotin, PRB62, 5696 (2000)



Spin state of Co+3 in LaCoO3

3d-level scheme for
low-spin ground state

Open circle denotes a hole in oxygen p-shell.

Scheme representation of various 
Co d6+d7L configurations in 

different spin states:

low intermediate high

M.Korotin et al, Phys.Rev.B 54 (1996) 5309; I.Nekrasov et al, Phys. Rev. B 68, 235113 (2003) 



Spin state of Co+3 in LaCoO3

relative to the energy of t26
geg

0 state versus R3c lattice constant.
The total energies for various spin states of LaCoO3



HoCoO3 versus LaCoO3

The rhombohedral crystal structure of LaCoO3 (left) and the orthorhombic 
crystal structure of HoCoO3 (right). Co - large spheres; O - small spheres.



HoCoO3 versus LaCoO3

Comparison of total energy per Co ion of intermediate and low-spin state 
solutions for LaCoO3 and HoCoO3 calculated with the LDA+U approach 
as a functions of temperature. The temperature of transition is calculated 
as the temperature where two lines cross.

I. A. Nekrasov et al, PRB 68, 235113  (2003)



Stripe phase in cuprates (La7/8Sr1/8CuO4)

V.Anisimov et al, Phys. Rev. B 70, 172501 (2004) 



Wannier function for metallic stripe band
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Exchange couplings for AF domain

Two-leg ladder



Other LDA+U results

• Magnetic transition in FeSi1–xGex
(PRL 76 (1996) 1735; PRL 89, 257203 (2002)

• Exchange couplings in molecular magnet Mn-12 
([Mn12O12(CH3COO)16(H2O)4]2CH3COOH4H2O )   
(PRB 65, 184435 (2002 ))

• Insulating ground state of quarter-filled ladder 
NaV2O5 (PRB 66, 081104 (2002) )

• CrO2 : a self-doped double exchange ferromagnet
(PRL 80, 4305 (1998) ) 

• Mott-Hubbard insulator on Si-terminated SiC(0001)  
surface (PRB 61, 1752 (2000))

• Polaron effects in La2-xSrxCuO4 and La2-xSrxNiO4
(PRL 68, 345 (1992);PRB 55,12829 (1997); PRB 66, 100502 (2002))

• Antiferromagnetism in linear-chain Ni compound 
[Ni(C6H14N2)2] [Ni(C6H14N2)2Cl2]Cl4 (PRB 52,6975 (1995) )



LDA+DMFT

LDA+U
Static mean-field approximation
Energy-independent potential
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LDA+DMFT
Dynamic mean-field approximation

Energy-dependent complex 
self-energy operator
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Applications:
Insulators with long-range 

spin-,orbital- and charge order

Applications:
Paramagnetic, paraorbital
strongly correlated metals

Unsolved problem: short 
range spin and orbital order

Dynamical cluster approximation (DCA)



Dynamical Mean-Field Theory 

Object of investigation: interacting
lattice fermions dynamics

Simplest description – Hubbard 
model

Correlations:

Square lattice, z=4
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•Approximations need to be made



Dynamical Mean-Field Theory 

Lattice problem is replaced by effective impurity problem with
complex energy dependent potential (self-energy) on all

lattice sites except distinguished one 



Dynamical Mean-Field Theory 

Metzner, Vollhardt (1989)
d→∞

Georges, Kotliar (1992)
mapping onto impurity problem, 

self-consistent equations

Real lattice Effective impurity problem

Mapping
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Dynamical Mean-Field Theory 

Approximation: electron self-energy is local and does not depend 
on momentum (wave vector) k but only on frequency iωn:

Lattice Green function is defined by self-energy:

Hybridization of the site orbitals with the rest of the crystal in effective single 
impurity model is described by hybridization function (iωn) or non-interacting 

bath Green function G0(iωn):



Dynamical Mean-Field Theory 

The DMFT mapping means:

Dyson equation for impurity problem:

Dyson equation is used twice in DMFT. First for known self-energy and lattice 
Green function bath Green function is calculated:

Then after impurity problem solution new approximation for self-energy can be defined:



DFT+DMFT calculations scheme

Local Green function:

Dyson equation defines bath Green function:

Self-consistent condition:

Impurity problem defined by bath Green
function is solved by QMC



DMFT calculations scheme

Impurity solvers:

•Quantum Monte Carlo method (QMC) – exact and efficient 
but very computer time consuming
•Numerical renormalization group (NRG) – unpractical for orbital 
degeneracy > 2
•Exact diagonalization method (ED) – discrete spectra and not 
suitable for orbital degenerate problem
•Iterative Perturbation Theory (IPT) – interpolation approximation
•Non-crossing Approximation (NCA)- first terms of hybridization 
expansion series



DMFT calculations scheme

Quantum Monte Carlo method (QMC)

discrete Hubbard-Stratonovich transformation:

Product n↑n↓ can be rewritten as a sum of quadratic and linear terms:

intHe Evolution operator can be linearized by



DMFT calculations scheme

Quantum Monte Carlo method (QMC)

where parameter :

discrete field s is an Ising-like variable taking the values +1 and -1

Partition function

the imaginary time interval is discretized into L time slices: 



DMFT calculations scheme

Quantum Monte Carlo method (QMC)

Using Hubbard-Stratonovich transformation:

and partition function becomes a sum over Ising fields sl :



DMFT calculations scheme

Quantum Monte Carlo method (QMC)



DMFT calculations scheme

Quantum Monte Carlo method (QMC)



DMFT calculations scheme

Quantum Monte Carlo method (QMC)

the total number of all possible spin configurations {sl} = s1, . . . , sL
for which one should calculate G(τ ) is equal to 2L (≈ 2100 ≈ 1030).

Many-dimensional integrals can be calculated by statistical Monte Carlo method.

Stochastically generated points in many-dimensional space xi are accepted 
to be included in summation with probability proportional to



DMFT calculations scheme

Quantum Monte Carlo method (QMC)

probability P is proportional to

physical Greens function is then given as an average of 

Probability of acceptance P{s}→{s′} for new configuration {s′}
obtained from {s} is calculated according to Metropolis formula:



DMFT calculations scheme

Quantum Monte Carlo method (QMC)

The Markov process is realized by going from configuration s to configuration
s′ by a single spin flip sp = −sp with probability of acceptance

P{s}→{s′} for new configuration {s′} obtained from {s}
Markov chain is given by every accepted configuration:

instead of summation with weights Zs1,...,sL an averaging of gσs1,...,sL(τl, τl′ )
over all accepted configuration is performed because probability

of acceptance is proportional to Zs1,...,sL. 
Number of Markov chain “sweeps” is usually ≈ 106 that is much smaller then 

total configurations number 2L (≈ 2100 ≈ 1030).



DMFT calculations scheme

Total energy calculation in LDA + DMFT

where ELDA is total energy obtained in LDA calculation, EDMFT is an energy calculated 
in DMFT and EMF is an energy corresponding to static mean-field approximation 
(restricted Hartree-Fock) for the same Hamiltonian as used in DMFT calculations.



DMFT calculations scheme

Total energy calculation in LDA + DMFT

where Gk(iωn) is electronic Green function corresponding to wave vector k

The average values for particle number operators products 
<nilmσ nilm′σ> can be calculated directly in QMC method

Energy corresponding to static mean-filed approximation EMF is calculated 
analogously with replacing interacting Green function Gk(iωn) on
GLDA

k (iωn) calculated with LDA Hamiltonian:



DMFT calculations scheme

Total energy calculation in LDA + DMFT

where nd is a total correlated electrons number on the site id
and U is an average value of Coulomb interaction between different orbitals.

and also with replacing second term in EDMFT on 
Coulomb interaction energy in the following form:



DMFT calculations scheme

Maximum entropy method for analytical continuation on real energies

QMC calculation procedure results in Matsubara Green function  G(τ ) for 
discrete imaginary time points τl − τl′ or imaginary energies G(iωn). Spectral   

function A(ω) for real energies  ω is solution of integral equation:

Entropy maximization principle accounts for stochastic noise in QMC Green function



DFT+DMFT calculations scheme

Calculation scheme of

Σ – Self-energy
G – Green function
U – Coulomb interaction

EWF – Energy of WF
QWF – Occupancy of WF
M(i) – Moments

V – DFT potential
V.Anisimov et al, Phys. Rev. B 71, 125119 (2005).
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Dynamical Mean-Field Theory
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Spectral function and self-energy



Dynamical Mean-Field Theory

Three peak spectral function and metal insulator transition in DMFT

A. Georges et al, Rev. Mod. Phys 68, 13 (1996) 



Dynamical Mean-Field Theory

Three peak spectral function and metal insulator transition in DMFT

R. Bulla et al, Phys. Rev. B 64, 045103 (2001)



Dynamical Mean-Field Theory

Temperature dependence of quasiparticle peak in DMFT

Half-filling 0.03 hole doping

Th. Pruschke et al, Phys. Rev. B 47, 3553 (1993)



Dynamical Mean-Field Theory

Suppression of correlation 
strength  and spectral weight

transfer between Hubbard
bands with hole doping in 

non-degenerate Hubbard model

H. Kajueter et al, Phys. Rev. B 53, 16 214 (1996)



Dynamical Mean-Field Theory

Orbital degeneracy dependence of quasiparticle peak in DMFT

Half-filling n=0.9

J. E. Han et al, Phys. Rev. B 58, R4199 (1998)



Dynamical Mean-Field Theory

Orbital degeneracy dependence of quasiparticle peak in DMFT

Triply degenerate band

P. Lombardo et al, Phys. Rev. B 72, 245115 (2005)
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