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Outline

• Density Functional Theory

• Wannier functions and Hamiltonian construction

• Static mean-field approximation: LDA+U method 

• LDA+U method  applications to real materials with orbital, 
charge and spin order

• Dynamical mean-filed theory (DMFT), impurity solvers

• LDA+DMFT  method and its applications to strongly 
correlated metals and paramagnetic insulators

• Electronic structure and correlation effects



Problem

Correlated electrons
motion with full 
Coulomb interaction

Independent electrons
motion with static mean-field 
Coulomb interaction potential
from Density Functional Theory



Problem

Weakly correlated
systems

Strongly correlated
metals

Localized electrons
in Mott insulators



Model Hamiltonians

Hubbard and Anderson models 
unknown parameters 
many-body 
explicit Coulomb correlations

Density Functional Theory

LDA
ab-initio
one-electron 
averaged Coulomb interaction

Problem

Coulomb correlations problem

combined LDA+U and LDA+DMFT  approaches
(GW, Time Dependent DFT are also a promising way)



L(S)DA input

L(S)DA calculations produces:

• one-particle Hamiltonian for itinerant states

• one-particle non-interacting Hamiltonian for localized states

• hybridization term between localized and itinerant states

• Coulomb interaction parameters (direct U and exchange J) 
for localized  states

Orbital variation space

partially localized subspace 
(d- or f-orbitals)

itinerant subspace 
(s-,p-orbitals)



Electronic structure calculations

Many-electrons equations
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Hamiltonian is a sum of one-electron and many-electron (Coulomb interaction) parts



Electronic structure calculations

Many-electrons equations
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Kinetic energy
and nuclear charge
potential energy contributions
to one-electron Hamiltonians

Electrons variables separation leads to one-electron approximation:
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u is one-electron wave function



Electronic structure calculations

Hartree-Fock approximation
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Slater determinant satisfies antisymmetric
properties of fermionic wave function



Electronic structure calculations

Hartree-Fock equations

Mean-field potential with direct and exchange parts.
Terms with  explicitly cancel self-interaction.
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Electronic structure calculations

Hartree-Fock equations

Direct terms can be expressed via electron density:
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Electronic structure calculations

Hartree-Fock equations

Exchange terms can be written as a sum of pair potentials:
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Orbital dependent potential
that couples equations in the 
system with each other



Electronic structure calculations

Slater approximation for exchange

Exchange potential for homogeneous electron gas:

Local density approximation:

Decoupled one-electron equations
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Density Functional Theory

According to Hohenberg-Kohn theorem  that is a basis of DFT, all ground state 
properties of inhomogeneous interacting electron gas can be described by 

minimization of the total energy as a functional of electron density ρ(r):

Density Functional

where T[ρ] is kinetic energy, Vext (r) - external potential acting on electrons
(usually that is attractive nuclear potential), third term  describes

Coulomb interaction energy (Hartree energy) corresponding to charge 
distribution ρ(r) and Exc is so called exchange-correlation energy.



Density Functional Theory

For practical applications ρ(r)
can be expressed via one-electron wave functions φi(r):

where N is total number of electrons.
To minimize the functional one need to vary it over new variables φi(r)

with additional condition that wave functions are normalized. That leads to
the system of Kohn-Sham differential equations:

Electron density variation



Density Functional Theory

Here RI is position vector for nucleus with charge ZI ; εi are Lagrange multipliers 
having the meaning of one-electron eigenenergies and exchange-correlation 

potential Vxc is a functional derivative of exchange-correlation energy Exc:

Kohn-Sham equations

Eigenvalue εi is derivative of the total 
energy in respect to the occupancy of the 

corresponding one-electron state ni:

]0[]1[  iii nEnEIn Hartree-Fock



Density Functional Theory

DFT applications are based predominantly on so called Local Density
Approximation (LDA) where exchange-correlation energy is defined as an

integral over space variables r with an expression under integral depending
only on local value of electron density ρ(r):

Local Density Approximation (LDA)

For spin-polarized systems one can use Local Spin Density Approximation (LSDA)

Here εxc(ρ) is contribution of exchange and correlation effects in total energy
(per one electron) of homogeneous interacting electron gas with density ρ.



Density Functional Theory

In Local Density Approximation (LDA) exchange-correlation potential in some 
space point r depends only on local value of electron density ρ(r):

Local Density Approximation (LDA)

An explicit form of exchange-correlation potential as a function of local value of 
electron density ρ(r) is:
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Density Functional Theory

Kohn-Sham equations for periodic crystal (translational invariant potential
V(r+l)= V(r), l is lattice translation vector):

Bloch functions in crystal

Solution satisfying periodicity condition is Bloch function for wave vector k 
having a form of a plane wave modulated by periodic function:

Bloch function satisfies 
to relation:
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Density Functional Theory

Calculations schemes for Kohn-Sham equations are based on variational
approach. Wave functions are expressed as series in complete set of basis 

functions:

Electronic structure calculations methods

Equivalent set of linear 
equations for coefficients 

i
na

Hamiltonian and overlap matrices



Density Functional Theory

Existing DFT methods could be divided in two major groups. One of them uses as 
a basis set atomic-like orbitals centered at atoms and decaying with increasing a 

distance from the center, for example Muffin-tin orbital (MTO) in 
Linearized Muffin-Tin Orbitals (LMTO) method :

Linearized Muffin-Tin Orbitals (LMTO) method 

Rl(|r|,E) is radial variable dependent part of Kohn-Sham equation
solution for spherically symmetric potential inside atomic sphere with radius S.



Density Functional Theory

Another group of DFT methods uses delocalized plane waves as a basis set:

Plane wave basis

where k is wave vector and g - reciprocal lattice vector.

Plane waves are good basis for 
inter-atomic regions 

where potential varies slowly
while  atomic like orbitals describe better
intra-atomic areas with strong potential

and wave functions variations



Density Functional Theory

Augmented Plane Wave is defined as

Linearized Augmented Plane Waves (LAPW) method

Combined nature of LAPW basis functions allows 
good description of Bloch functions in all space regions 

(inter-atomic as well as intra-atomic)



Density Functional Theory

Pseudopotential approach

Smooth behavior of 
pseudofunction inside atomic 
core area allows to use plane 
wave basis for whole crystal 

Real potential and wave function are replaced by  some pseudopotential
and corresponding pseudofunction that coincide with real functions 

and real potential outside  atomic core area



Density Functional Theory

Breakdown of LDA for strongly correlated systems

NiO and CoO are experimentally 
wide gap insulators (Mott 

insulators) but  LSDA  gave 
small gap insulator for NiO and 

metal for CoO with partially
filled t2g spin-down electronic

subshell

LDA potentials are the same for all orbitals  with the possible 
difference due to exchange interaction: 

NiO CoO



Corrections to Density Functional Theory

Self-Interaction Correction (SIC) method
Orbital dependent potential with “residual self-interaction”

present in LDA  explicitly canceled for all occupied states i: 

is charge density for state i

SIC correction is absent for empty states and 
so energy separation between occupied and  

empty states results in energy gap appearance



Corrections to Density Functional Theory

Generalized Transition State (GTS) method
Excitation energy for electron removal from state i is  

equal to total energy difference between final and initial configurations:

GTS correction is positive for empty states and negative for occupied states 
and energy separation between occupied and  empty states appears

=

=

Many other corrections
were developed to imitate

Mott energy gap:
GW, Optimized Effective potential,

Hybrid Functional et ct

using:



Basic models in strongly correlated systems theory

Hubbard model

Local Coulomb interaction between electrons with Coulomb parameter U
defined as an energy needed to put two electrons on the same atomic site:

tij is hopping matrix element 
describing kinetic energy terms .



Basic models in strongly correlated systems theory

tJ-model

creation operator for correlated electrons,

Anderson kinetic exchange.

tJ-model can be derived from Hubbard model in the limit U>>t



Basic models in strongly correlated systems theory

Kondo lattice model

S is spin operator for localized electrons,

Itinerant electrons spin operator.

Usually is applied to rare-earth elements compounds where 4f-
electrons are considered to be completely localized with exchange-only 

interaction with itinerant metallic electrons



Basic models in strongly correlated systems theory

Periodic Anderson model (PAM)

Fermi operators for itinerant s- and 
localized d-electrons respectively

Vij s-d hybridization parameter.

If hopping between d-electrons term is added to PAM then the most general 
model Hamiltonian is defined that gives complete description of any material.



General functionals
(electron density, 

spectral density et. ct.)

Model Hamiltonians with 
DFT parameters

Problem

“Dream” fully ab-initio method

How to define interaction term in 
ab-initio but still practical way?

Orbitals?



DFT and correlations

DFT-input: non-interacting Hamiltonian and 
Coulomb interaction parameters (H0, U)

Standard approximation: Green functions are calculated 
using DOS (N0) from DFT

(-) Reliable results only for high-symmetry (cubic) systems

Self-energy operator 
for cubic systems:

Green function:



General formula using non-interacting Hamiltonian 
obtained by projection of the correlated states into 

full-orbital DFT Hamiltonian space

Open questions:
1) Choice of basis for projected Hamiltonian
2) Procedure of projecting

DFT + correlations: general case

Low-symmetry systems?



Problem of orbitals definition

What are Hubbard model basis orbitals?
Some kind of atomic-like site-centered localized orbitals without explicit definition.
Matrix elements are considered as a fitting parameters. 

Why not to use LMTO basis?
Pure atomic orbitals neglect strong covalency effects.  For example unoccupied
Cu-3d x2-y2 symmetry states in cuprates have predominantly oxygen  2p-character.

One need new “physically justified” orbital basis set 
for Hamiltonian defined on the  correlated states subspace



Why Wannier Functions?

Advantages of Wannier function basis set:
<Explicit form of the orbitals
forming complete basis set
 Localized  orbitals
 Orbitals are centered on atoms

Wannier functions in real space [1]:

[1] G.H. Wannier, Phys. Rev. 52, 192 (1937)

Bloch functions

like in Hubbard model

Uncertainty of WF definition
for a many-band case: 

Unitary matrix



Wannier functions and projection

Eigenvector 
element

WF in k-space – projection of the set of trial functions [2]  (atomic 
orbitals) into Bloch functions subspace :

Bloch functions in DFT basis
(LMTO or plane waves):

coefficients of  WF expansion in LMTO-orbitals:

Bloch sums of 
LMTO orbitals

[2] D.Vanderbildt et al, Phys. Rev.B 56, 12847 (1997)



Example of  WF in real space

WF basis set for V-3d (t2g) subband of SrVO3: XY, XZ, YZ - orbitals



Example of  WF in real space

V-3d (3z2-r2) WF orbital for SrVO3

3D plot of WF isosurface:
1. decrease from |WF| = 0.5 to 0.02
2. rotation around z-axis
3. rotation around x,z axes and increase to |WF| = 0.5

Max{|WF|} = 1



d-xy WF for NiO

Dm.Korotin et al, Europ. Phys. J. B 65, 91 (2008).

Full bands projection d-bands only projection



WF in cuprates

V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007)

Crystal structure of LiCu2O2
Green, red,  blue, black, and 
yellow  spheres are Cu2+

Cu+,O, and Li ions, respectively.



WF in cuprates

V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007)

Wannier orbitals 
centered on 
neighboring
copper atoms along 
the y axis.



WF in cuprates

V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007)

900 bond between Cu Wannier functions cancels 
antiferromagnetic kinetic energy exchange. Overlap on oxygen 
atoms gives ferromagnetic exchange  due to Hund interaction on 
oxygen 2p-orbitals



WF for stripe phase in cuprates

V.Anisimov et al, Phys. Rev. B 70, 172501 (2004) 

La7/8Sr1/8CuO4

Half-filled band



WF for stripe phase in cuprates

Cu
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Projection procedure for Hamiltonian

Matrix elements of projected Hamiltonian:

*
=

ba
nd

s

orbitals

N1

N2

LMTO Eigenvectors, Eigenvalues

cni cmi εi HWF



Projection results for SrVO3
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Eigenvalues of full-orbital and projected Hamiltonians are the same 

Projected Hamiltonian DOS corresponds to the 
total DOS of full-orbital Hamiltonian



Constrain DFT Calculation of U   

Matrix of projected Hamiltonian in real space:

Density matrix operator:

Energy of n-th WF:

Occupation of n-th WF:

Coulomb interaction



Definition of WF using Green-functions   

WF definition: 

where
In the absence of Self-energy:

Coincides with definition of WF using Bloch functions



Calculation scheme

Coulomb interaction  Hamiltonian:

where Vee is screened Coulomb interaction between electrons in idndld shell 
with matrix elements expressed via complex spherical harmonics

and effective Slater integral parameters Fk

where k = 0, 2, . . . , 2l



Calculation scheme

Coulomb interaction  Hamiltonian:

where Ykq are complex spherical harmonics.
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Gaunt coefficients, L=(l,m):



Calculation scheme

Coulomb interaction  Hamiltonian:

For d electrons one needs to know F0, F2 and F4 and these can be linked to the 
Coulomb and Stoner parameters U and J obtained from the constrain DFT 
procedures, while the ratio F2/F4 is ~ 0.625 for the 3d elements. For f electrons 
the corresponding expressions are J = (286F2 + 195F4 + 250F6)/6435 and ratios 
F4/F2 and F6/F2 equal to 451/675 and 1001/2025.



Calculation scheme

Coulomb parameter U calculations:

Screened Coulomb potential:

Unscreened Coulomb potential:

Polarization operator:

Strong dependence on the number of occupied and empty states 
included in the summation for polarization operator



Calculation scheme

Coulomb parameter U calculations:
Constrain DFT method

Definition:

DFT analogue:

Connection of one-electron 
eigenvalues and total energy in DFT:

DFT calculations with constrain potential:

Energy of n-th WF:

Occupation of n-th WF:



Calculation scheme

Coulomb interaction  Hamiltonian:

The general Hamiltonian  assumes possibility of mixing for orbitals with different
m values (or in other words possibility for electrons occupy arbitrary linear
combinations of |inlmσ> orbitals). However in many cases it is possible to
choose “natural” orbital basis where mixing is forbidden by crystal symmetry.
In this case terms c+

ilmσcilm′σ with m non equal to m′ are absent and Coulomb 
interaction Hamiltonian can be written as

Third terms corresponds to spin flip for electron on m orbital with 
simultaneous reverse spin flip on orbital m′ that allows to describe x and y
spin components while the fourth term describes pair transition of two 
electrons with opposite spin values from one orbital to another.



Calculation scheme

Coulomb interaction  Hamiltonian:

is particle number operator for electrons on orbital |inlmσ>
Here we have introduced matrices of direct
Umm′ and exchange Jmm′ Coulomb interaction:

Neglecting spin-flip effects and leaving only density-density terms we have:



Calculation scheme

Coulomb interaction  Hamiltonian:

Kanamori parameterization is usually used where for 
the same orbitals (m = m′) direct Coulomb interaction 
Umm ≡ U, for different orbitals (m non equal m′)
Umm′ ≡ U′ with U′ ≡ U − 2J and exchange interaction 
parameter does not depend on orbital index Jmm′ ≡ J. 
In this approximation Hamiltonian is:



Calculation scheme

Double-counting problem for Coulomb interaction

Full Hamiltonian is defined as:

In DFT Coulomb interaction energy is a functional of electron density that is 
defined by the total number of interacting electrons nd. Hence it is reasonable to 
assume that Coulomb interaction energy in DFT is simply a function of nd :



Calculation scheme

Double-counting problem for Coulomb interaction

To obtain correction to atomic orbital energies d in this approximation
one needs to recall that in DFT one-electron eigenvalues are derivatives of
the total energy over corresponding state occupancy nd

and the term in Hamiltonian responsible for “double counting” correction HDC is

and hence correction to atomic orbital energy DC can be determined as:



Calculation scheme

LDA+correlations Hamiltonian: Coulomb
0

correl+LDA ĤĤ=Ĥ 

Coulomb interaction term
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LDA+U method: static mean-filed approx.

Static mean-field decoupling of four Fermi operators product:

results in one-electron Hamiltonian:



LDA+U method: static mean-filed approx.

LDA+U functional:

One-electron energies: )n
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LDA+U method: general formalism

LDA+U functional:
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V.Anisimov et al, Phys. Rev.B 44, 943 (1991); J.Phys.: Condens. Matter 9,767 (1997) 



LDA+U potential correction

Non-local LDA+U potential operator:

Potential correction matrix:
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Exchange interaction couplings

Calculation of J from LDA+U results:
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