

UCDAVIS

Metal-Insulator Transitions in Two Dimensions: Quantum Monte Carlo Studies

AGGIES

UCDAVIS

- \bullet Experimental and Theoretical Motivation
- The Hubbard Model
- e Quantum Simulation Techniques
- \bullet 2D Superconductor Insulator Transitions
- snoiti
snor $\mathrm{Transitions}$ \bullet 2D Metal
 And
erson Insulator
- \bullet 2D Metal Mott Insulator Transitions
- enoitiansıT benuT blei'A •
- Conclusions

Collaborators

N. Trivedi (Ohio State Univ.)M. Randeria (Ohio State Univ.)P. Denteneer (Leiden)

Funding National Science Foundation

Experimental Motivation

High mobility silicon MOSFETS show evidence for MIT. Kravchenko etal (1994)

Scaling behavior strengthens case for separate metal/insulator phases.

Similar experiments at fixed carrier density but varying magnetic field: Simonian *etal* (1997)

Associated scaling plots again suggest MIT.

Theoretical Motivation

TIM neat reaction I – OS vbuts of besu terih OMQ (vlisute A Superconductor-Insulator Transitions W20.0 < T substants of T since temperatures T substants of TFinite size lattices: several hundred e Incorporates electron-electron interactions and disorder exactly Quantum Monte Carlo Interaction parameter scales to strong coupling Metallic phase possible Incorporate electron-electron interactions and disorder (s'0801) seiroent DA evitsdrutred retained Assumes no electron-electron interactions snoisnemib owt ni noisuffib mutusup oN Enhanced backscattering from static impurities (6791) noitestifesod to vroadt guiles?

snoits lumis ni T suttangent no noits intervente N

 v_s Nell defined thermodynamic order parameter ρ_s

Sheet Resistance of Bismuth Films Thicknesses 4.36 Å (top curve) to 74.27 Å (bottom curve) Y. Liu etal (1991)

ΗΟΒΒΑΑΡ ΗΑΜΙΓΤΟΝΙΑΝ

i

Seeman Field

HUBBARD HAMILTONIAN- BASIC PHYSICS

(NO DIZOBDEB OB ZEEWAN EIELD)

Antiferromagnetic snoitalations Mott Insulator at half-filling $(\rho = 1 \ e^{-} \ per \ site)$

Away from half-filling: paramagnetic metal (d-wave superconductor?) Stripes (charge inhomogeneities)? U very large: ferromagnetic phases.

HUBBARD HAMILTONIAN- BASIC PHYSICS

MITH DISORDER (AND ZEEMAN FIELD)

1111

With interactions $(U \neq 0)$ Delocalize electrons

(0 = U) snoiterstions (U = 0) Anderson Insulator

Zeeman field: Reduce U, return to insulator

DETERMINANT QUANTUM MONTE CARLO

Basic Features

. W 20.0 < T sight of T, in others T > 0.02 W. Systems of up to $\approx 4 \text{ x } 10^2$ electrons Dynamics (real time) response more difficult (analytic continuation) Can measure any finite T quantity $\langle c_{\mathbf{i}\sigma_1}^{\dagger} c_{\mathbf{i}\sigma_2}^{\dagger} \cdots c_{\mathbf{k}\sigma_3} c_{\mathbf{l}\sigma_4} \cdots \rangle$ Exact Treatment of interactions, disorder,

Technical Details

 $(x)_{\downarrow}$ Mth $(x)_{\uparrow}$ Mth $(\tau I) x \mathcal{O} = Z$ Integrate out the electrons analytically Non-interacting electrons moving in (classical) auxiliary field $(\tau \mathbf{I})x$ blaft derived the Hubbard-Stratonovich field $x(\mathbf{I}\tau)$ Path integral for partition function $Z = e^{-\beta H}$

Monte Carlo sampling over this field

Eliminate 'Trotter error': $\beta = L\Delta\tau$ by taking $\Delta\tau \to 0$.

$$\begin{split} {}^{\mathbf{I}}\mathbf{U} \stackrel{\mathbf{I}}{=} \mathbf{C}^{\mathbf{I}}_{\mathbf{L}} \stackrel{\mathbf{I}}{=} \mathbf{C}^{$$

Real space charge, spin, pairing correlations /structure factors

$$d\varrho/u\varrho = \varkappa$$

Compressibility

$$\langle (\mathbf{u}^{\downarrow} - \frac{\mathbf{u}}{\mathbf{u}})(\mathbf{u}^{\uparrow} - \frac{\mathbf{u}}{\mathbf{u}}) \rangle = \frac{\mathbf{u}}{\mathbf{u}} - \langle (\mathbf{u}^{\downarrow} - \mathbf{u}^{\uparrow})_{\mathbf{u}} \rangle$$

Potential Energy/Local moment

$$\langle -\sum_{\mathbf{v},\mathbf{i}} t_{\mathbf{i}} (c_{\mathbf{i}\sigma}^{\dagger} c_{\mathbf{j}\sigma} + c_{\mathbf{i}\sigma}^{\dagger} c_{\mathbf{i}\sigma}) \rangle$$

Kinetic Energy OBSERVABLES

Current-current correlation function

$$\Lambda_{xx}(\mathbf{q};i\omega_n) = \sum_{\mathbf{I}} \int_0^\beta d\tau \langle j_x(\mathbf{I},\tau) j_x(0,0) \rangle e^{i\mathbf{q}\cdot\mathbf{I}} e^{-i\omega_n\tau}$$
$$j_x(\mathbf{I},\tau) = e^{H\tau} \left[it \sum_{\sigma} (c_{\mathbf{I}+\hat{\alpha},\sigma}^{\dagger}c_{\mathbf{I},\sigma} - c_{\mathbf{I},\sigma}^{\dagger}c_{\mathbf{I}+\hat{\alpha},\sigma}) \right] e^{-H\tau}$$

Conductivity

$$\sigma_{\rm dc} = \frac{\beta^2}{\pi} \Lambda(\tau = \beta/2)$$

IN THE ATTRACTIVE HUBBARD MODEL EFFECT OF DISORDER ON PAIR CORRELATIONS

 $\Delta_{\mu} = 0: \text{ long range pair correlations (SC) at low T.}$ $P_{I}^{s} = \langle \Delta_{I+j}^{s} \Delta_{I+j}^{s} \Delta_{I+j}^{s} \rangle$ $\Delta_{I+j}^{s} c_{I+j}^{\dagger} c_{I+j}^{\dagger} \rangle$

 $\Delta_{\mu} \neq 0$: Pair correlations are driven to zero.

| [|

Longitudinal Current-Current Correlation Function

Current-current correlation function:

$$\int_{xx} \Lambda_{xx} \Lambda_{xx} (\mathbf{I}, \mathbf{I}) = \sum_{\mathbf{I}} \int_{0}^{\mathbf{Q}} \int_{\mathbf{U}} \sum_{\mathbf{U}} \left[it \sum_{\mathbf{V}, \mathbf{U}} (\mathbf{I}, \mathbf{I}) \int_{x} (\mathbf{I}, \mathbf{U}) \int_{x} (\mathbf{I}, \mathbf{U}) \right]_{\mathbf{U}} e^{i\mathbf{U}_{\mathbf{U}}}$$

The longitudinal part must satisfy the equality,

$$\Lambda^{\mathrm{L}} \equiv \lim_{q_{x} \to 0} \Lambda_{xx} (q_{x}, q_{y} = 0; i\omega_{n} = 0) = -K_{x}.$$

Transverse Current-Current Correlation Function The transverse part measures the superfluid stiffness,

$$(0 = {}^{n}\omega_{i}; {}^{v}\psi, 0 = {}^{x}\phi] = [{}^{T}\Lambda - {}^{n}\Lambda] = [{}^{T}\Lambda - {}^{n}\Lambda];$$
$$(0 = {}^{n}\omega_{i}; {}^{v}\psi, 0 = {}^{n}\phi] = {}^{n}\Lambda$$

Transport Evidence for the Superconductor-Insulator Phase Transition

$$(\omega) \Lambda m I \frac{(\tau \omega -) q x_{9}}{[(\omega \partial -) q x_{9} - 1]} \frac{\omega b}{\pi} \sum_{\infty - \infty}^{\infty + 2} = (\tau) \Lambda$$

, is in the normal state, $\operatorname{Im}\Lambda(\omega) \sim \omega \sigma_{\operatorname{dc}}$ at low frequencies,

$$\sigma_{\mathrm{dc}} = \beta^2/\pi \quad \Lambda(\tau = \beta/2) \cdot$$

Effect of Interactions on the Anderson Insulator REPULSIVE HUBBARD MODEL

$${}_{\mathbf{t}} \Delta_{\mathbf{t}} + \mathbf{1} > {}_{\mathbf{t}} \mathbf{i} \mathbf{j} > {}_{\mathbf{t}} \Delta_{\mathbf{t}} = H$$

$$({}_{\mathbf{t}} \mathbf{j} {}_{\mathbf{0}} \mathbf{j}_{\mathbf{0}} + {}_{\mathbf{0}} \mathbf{j}_{\mathbf{0}} \mathbf{j}_{\mathbf{0}} + {}_{\mathbf{0}} \mathbf{j}_{\mathbf{0}} \mathbf{j}_{\mathbf{0}$$

When U is turned on, conductivity rises as T is lowered.

 $\Delta_t = 2$ $\Delta_t = 2$

Effect of Increased Disorder on the Metal Increase disorder strength in metallic phase.

$$H = -\sum_{\langle \mathbf{i}, \mathbf{j} \rangle_{\sigma}} \mathbf{\dot{t}}_{\mathbf{i}, \mathbf{j}} \left(c^{\dagger}_{\mathbf{i}_{\sigma}} c_{\mathbf{j}_{\sigma}} + c^{\dagger}_{\mathbf{j}_{\sigma}} c_{\mathbf{i}_{\sigma}} \right)$$

System returns to insulating. MIT (tuned by disorder strength).

Disordered Mott-Hubbard Insulator We just showed: Hubbard model at quarter filling $(\rho = 1/2)$: Interactions cause Anderson insulator to go metallic. Further increase of bond disorder converts back to insulator. At half-filling, ($(\rho = 1)$) Mott-Hubbard insulator. At half-filling, ($(\rho = 1)$) Mott-Hubbard insulator. Electrons localize to avoid double occupation. Effect of bond disorder? Electrons localize to avoid double occupation.

Bond disorder makes the Mott-Hubbard Insulator more robust. Conductivity turns downward more strongly as T is lowered. Interactions and disorder cooperate. Bond disorder does destroy long-range antiferromagnetism.

Particle Hole Symmetry Bond disorder: particle-hole symmetric. Site disorder strengthens Mott-Hubbard insulator. Site disorder

τ

not particle-hole symmetric. It destroys the Mott-Hubbard insulator.

Another View of Particle-Hole Symmetry Examine the Mott-Hubbard gap by evaluating $\rho(\mu)$ P-H symmetric disorder, $\Delta_t = 2t$ and $\Delta'_{\mu} = 2t$, Mott gap enlarges. Canonical site disorder has little effect, for $\Delta_{\mu} = 2t = U/2$.

Field Tuned Metal Insulator Transition

Location of Critical Point

Large B_{\parallel} and nonzero disorder: conductivitity σ_{dc} should vanish. (Effectively, no interactions). Subtract large U piece of σ_{dc} to correct for finite N and T. $\delta \sigma_{dc} \rightarrow 0$ for $B_{\parallel} \approx 0.4 t$.

Alternatively, look at crossing of ρ vs. B_{\parallel} .

Resistivity Saturation occurs below point of full spin polarization. $\Delta_t = 2.0 t$ is fairly close to critical value $\Delta_t(\text{crit}) = 2.4 t$ where bond disorder destroys metallic phase. Zeeman field does not need to be very big to drive to insulator. In particular, get insulator well before full spin polarization.

snoisulano^O

QMC shows clear evidence for MIT in the disordered Hubbard model

- Ud
t
gnerts noite
rstation of interaction strength U
- * As a function of degree of disorder
- bləñ əitəngam to noitənut a
 ${\rm sA}$ ${\rm *}$
- * Field-driven MIT occurs prior to full spin polarization
- * Particle–Hole symmetry appears to play an important role