Section I Exact diagonalisations and Lanczos methods Comparison with other methods

Outline

- 1. Power method & Lanczos algorithm: how to get started
- 2. Finite size scaling: a simple example 1D chain of correlated fermions
- 3. How to implement it on a computer
- 4. Dynamical correlations
- 5. Comparison with other methods
 - DMRG method (basic notions)
 - Stochastic methods (see R. Scalettar's Course)
 Section IExact diagonalisations and Lanczos methodsComparison with other methods –

Some references

-Exact diag: "Simulations of pure and doped low-dimensional spin-1/2 systems",
N. Laflorencie and D. Poilblanc, Chapter 5,
Quantum Magnetism, Lecture Notes in Physics,
Ed. U. Schollwöck et al., Spinger (2004)

-DMRG: Review by R.M. Noack in "Lectures on The Physics of Highly Correlated Electron Systems IX", AIP Conf. Proceedings Vol.789 (2004).

Some lattice models to study

Hubbard model (metal & insulator phases)

$$H_U = H_K + \sum_{\mathbf{i},\mathbf{j}} V_{\mathbf{i}\mathbf{j}} n_{\mathbf{i}} n_{\mathbf{j}}$$
$$H_K = \sum_{\mathbf{i},\mathbf{j},s} t_{\mathbf{i}\mathbf{j}} c_{\mathbf{i},s}^{\dagger} c_{\mathbf{j},s}$$

Typically V_{ij} restricted to on-site repulsion (Hubbard U term) and nearest neighbor V

Strong coupling limits

Heisenberg model (insulator at half-filling)

$$H_J = \sum_{\mathbf{i},\mathbf{j}} J_{\mathbf{i}\mathbf{j}} \, \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$$

Strong coupling: t-J

$$H_{t-J} = H_J + \mathcal{P}H_K\mathcal{P},$$

$$H_K = \sum_{\mathbf{i},\mathbf{j},s} t_{\mathbf{i}\mathbf{j}} c^{\dagger}_{\mathbf{i},s} c_{\mathbf{j},s}$$

 \mathcal{P} Gutzwiller projector: $\mathcal{P} = \prod_i (1 - n_i n_i)$

Finite size clusters

Correlated lattice models Goals: ⇒ ground state properties ⇒ low energy excitations

The simple power method

 H^n acts as a projector on the GS for $n \to \infty$

$$|\Phi_n\rangle = (H - \lambda)^n |\Phi_0\rangle,$$

Then: $\langle \Phi_n | H | \Phi_n \rangle / \langle \Phi_n | \Phi_n \rangle \to E_{\rm GS}$

The Lanczos algorithm

Build a tri-diagonal matrix

$$H|\Phi_1\rangle = e_1|\Phi_1\rangle + b_2|\Phi_2\rangle,$$

:

$$H|\Phi_n\rangle = e_n|\Phi_n\rangle + b_{n+1}|\Phi_{n+1}\rangle + b_n|\Phi_{n-1}\rangle$$

Recurrent procedure: $e_n = \langle \Phi_n | H | \Phi_n \rangle$

References

- C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950)
- J.C. Bonner and M.E. Fisher, Phys. Rev. 135, 640 (1964)

J. Oitmaa and D.D. Betts, Can. J. Phys. $|\phi_{n+1}\rangle = H|\Phi_n\rangle - e_n|\Phi_n\rangle - b_n|\Phi_{n-1}\rangle$ 56, 897 (1978)

Section IExact diagonalisations and Lanczos methodsComparison with other methods - p.

Use of symmetries

Goal: Block-diagonalize the H matrix

$$J_{\mathbf{x}\mathbf{y}} = J(\mathbf{x} - \mathbf{y})$$

and

 $\forall g_P \in \mathcal{G}_P, J(g_P(\mathbf{r})) = J(\mathbf{r}).$

Space Group: $\mathcal{G} = \mathcal{G}_P \otimes \mathcal{T}$ Transl. group: $\mathcal{T} = \{t_p\}, p = 1, ..., N$ Point group: $\mathcal{G}_P = C_{4v}$ (square lattice)

A simple example: the 2D t-J model

N=26

N=32

$N_h / \sqrt{N} \times \sqrt{N}$	Hilbert space for $S_Z = S_Z^{\min}$	Symmetry group	Reduced HS
$1/4 \times 4$	102 960	T_{16}	6 435
$1/\sqrt{26} \times \sqrt{26}$	135 207 800	T_{26}	5 200 300
$1/\sqrt{32} \times \sqrt{32}$	9 617 286 240	$T_{32} \otimes C_{4v}$	37 596 701*
$4/\sqrt{26}\times\sqrt{26}$	10 546 208 400	$T_{26} \otimes C_4 \otimes I_2$	50 717 244

Use of "Block theorem"

$$\begin{aligned} \mathbf{K} &= \sum_{\mu} n_{\mu} \mathbf{K}_{\mu} \,, \\ \text{where } \mathbf{K}_{\mu} \text{ reciprocal lattice vectors} \\ \mathbf{K}_{\mu} &= \frac{2\pi}{N} \mathbf{T}_{\mu} \wedge \mathbf{e}_{z} \end{aligned}$$

 $\mathcal{G}_{\mathbf{K}}^{P}$, little group of \mathbf{K} ($\mathcal{G}_{\mathbf{K}}^{P} \subset \mathcal{G}_{P}$), containing g_{P} such that $g_{P}(\mathbf{K}) = \mathbf{K}$.

The relevant subgroup of \mathcal{G} : $\mathcal{G}_{\mathbf{K}}=\mathcal{G}_{\mathbf{K}}^{P}\otimes\mathcal{T}~.$

Example: the checkerboard lattice

N = 32 sites "checkerboard" cluster

• $\mathbf{K} = (0, 0)$ or (π, π) : $\mathcal{G}_{\mathbf{K}} = C_{4v} \otimes \mathcal{T}_{16}$ • $\mathbf{K} = (0, \pi)$ or $(\pi, 0)$: $\mathcal{G}_{\mathbf{K}} = C_{2v} \otimes \mathcal{T}_{16}$ • $\mathbf{K} = (\pi/2, \pi/2)$: $\mathcal{G}_{\mathbf{K}} = \mathcal{C}_{2v} \otimes \mathcal{T}_{16}$

Change boundary conditions

- translation vectors of the form $\mathbf{T}_{\mu} = (0, ..., 0, L_{\mu}, 0, ..., 0)$

- flux Φ (in unit of the flux quantum) through one hole of d-dimensional torus \rightarrow twist in the boundary conditions along

direction e_{μ} :

$$t_{\mathbf{xy}} c_{\mathbf{x},s}^{\dagger} c_{\mathbf{y},s} \to t_{\mathbf{xy}} c_{\mathbf{x},s}^{\dagger} c_{\mathbf{y},s} \exp\left(2i\pi \frac{\Phi}{L_{\mu}}(\mathbf{x}-\mathbf{y})\cdot\mathbf{e}_{\mu}\right)$$

Finite size scaling: Simple example: a one dimensional system of correlated fermions

1D correlated fermions: Hubbard chain

1D systems: spin and charge collective modes with velocities u_{ρ} and u_{σ}

Density of state: $N(\omega) \sim |\omega|^{\alpha}$ α and K_{ρ} non-universal exponents: $\alpha = \frac{1}{4}(K_{\rho} + \frac{1}{K_{\rho}} - 2)$

Practical formula: $\pi D = 2u_{\rho}K_{\rho}$

 $\rightarrow u_{\rho}$ and D obtained on finite systems:

• "Drude weight": $D = \frac{\partial^2 (E_0/L)}{\partial \phi^2}$ where $\phi = 2\pi \frac{\Phi}{L}$.

Section lExact diagonalisations and Lanczos methodsComparison with other methods – p.13 Provide A $k = 2\pi/L$

Finite size in 1D

• conformal invariance implies: $\frac{\pi}{2} \frac{u_{\rho}}{K_{\rho}} = \frac{1}{\kappa}$

• compressibility $\kappa^{-1} = \frac{1}{2} \frac{\partial^2 (E_0/L)}{\partial n^2}$ computed numerically

 \rightarrow check consistency of LL picture

finite size scaling of GS energy:

$$\frac{E_0(L)}{L} = e_{\infty} - \frac{\pi(u_{\rho} + u_{\sigma})}{6L^2}c + \mathcal{O}(1/L^2)$$

• central charge c given by symmetry spin velocity u_{σ} calculated independently.

Results & comparison with BA

Spinless fermion chain (t-V model) exactly solvable by Bethe-Ansatz (n = 1/2)

Note: periodic boundary conditions used

S. Capponi, Thèse 1999 (Toulouse)

Partial summary

Advantages

Non-perturbative method !!

- Comparisons to experiments:
 - Fits → microscopic parameters
 - Structure factors (ordering, etc...)
 - Thermodynamics
 - Spectroscopies (ARPES, INS, $\sigma(\omega),...$)

Versatile method ! Extensions to many models - e.g. models with phonons

Limitations

- Small clusters !!
- Simple models (with few degree of freedom/ / site)

A little practice: How to implement the Lanczos method on a computer ?

The Hilbert space

 P^N states $\propto \exp N$!!

Hubbard $\rightarrow P = 4; \emptyset, \uparrow, \downarrow, \uparrow\downarrow$ Heisenberg: $\rightarrow P = 2; \uparrow, \downarrow$ t-J: $\rightarrow P = 3; \emptyset, \uparrow, \downarrow$

Digital coding: $|c\rangle = |s_1, ..., s_i, ..., s_N\rangle \Rightarrow 1$ integer Heisenberg: $N(|c\rangle) = \sum_{1}^{N} 2^{i-1} \sigma_i$, with $\sigma_i = 0, 1$ t-J: $N(|c\rangle) = \sum_{1}^{N} 2^{2(i-1)} \sigma_i$ with $\sigma_i = 0$ ="00", 1="01", 2="10" N=4 states: $|\uparrow, \emptyset, \uparrow, \downarrow\rangle = 0_{64}...0_9 0_8 1_7 1_6 0_5 0_4 0_3 1_2 0_1$

The irreducible representations

- .Symmetry sector: $l = (\mathbf{K}, \tau_{\mathbf{K}})$ $\tau_{\mathbf{K}}$ irreducible representations (IR) of $\mathcal{G}_{\mathbf{K}}^{P}$
- ."symmetric" state $|\alpha\rangle \equiv |\alpha\rangle \{|c\rangle\}$: $\sum_{g_P \in \mathcal{G}_{\mathbf{K}}^P, t \in \mathcal{T}} e(\tau_{\mathbf{K}}, g_P) \exp(i\mathbf{K} \cdot \mathbf{T}_t) (g_P t)(|c\rangle),$ where $e(\tau_{\mathbf{K}}, g_P)$ = characters of IR $\tau_{\mathbf{K}}$
- ⇒ keep only one state $|r\rangle = R(|c\rangle)$ among related states $(g_P t)(|c\rangle)$
- Convenient choice: smallest integer $N(|c\rangle)$ i.e. $N(|r\rangle) = \min_{g \in \mathcal{G}_{\mathbf{K}}} \{N(g(|c\rangle))\}$

Set of all representatives $\mathcal{A}_l = \{|r\rangle\}$ \Rightarrow Hilbert space reduced by $\operatorname{card}(\mathcal{G}_K)$

How to construct "representatives"

The simplest case: Hubbard-like models $|c\rangle = |c(\uparrow)\rangle \otimes |c(\downarrow)\rangle$ $N(|c\rangle) = N'(|c(\uparrow)\rangle) \times 2^N + N'(|c(\downarrow)\rangle)$

. Minimisation of $N(g(|c\rangle))$ over $g \in \mathcal{G}_{\mathbf{K}}$:

- 1. generate all \uparrow spins configs $\rightarrow |r(\uparrow)\rangle$ kept,
- 2. store $\mathcal{E}_{\mathbf{K}}[|r(\uparrow)\rangle] \subset \mathcal{G}_{\mathbf{K}} / |r(\uparrow)\rangle$ invariant,
- 3. construct full set of configs as $|r(\uparrow)\rangle\otimes|c(\downarrow)\rangle$,
- 4. apply all elts of $\mathcal{E}_{\mathbf{K}}[|r(\uparrow)\rangle]$ to \downarrow part,
- 5. only retain $|c(\downarrow)\rangle$ such: $\forall g' \in \mathcal{E}_{\mathbf{K}}[r(\uparrow)\rangle] N'(|\mathfrak{E}(\mathsf{tor}|\mathfrak{E})|\mathfrak{a}\rangle) = N'(|\mathfrak{E}(\mathfrak{E}|\mathfrak{E})|\mathfrak{a}\rangle) = N'(|\mathfrak{E}(\mathsf{tor}|\mathfrak{E})|\mathfrak{a}\rangle) = N'(|\mathfrak{E}(\mathsf{tor}|\mathfrak{E})|\mathfrak{a}\rangle) = N'(|\mathfrak{E}(\mathsf{tor}|\mathfrak{E})|\mathfrak{a}\rangle) = N'(|\mathfrak{E}|\mathfrak{E}|\mathfrak{a}\rangle) = N'(|\mathfrak{E}|\mathfrak{E}|\mathfrak{E}|\mathfrak{a}\rangle) = N'(|\mathfrak{E}|\mathfrak{E}|\mathfrak{a}\rangle) = N'(|\mathfrak{E}|\mathfrak{E}|\mathfrak{E}|\mathfrak{a}\rangle) = N'(|\mathfrak{E}|\mathfrak{E}|\mathfrak{E}|\mathfrak{$

Hamiltonian matrix

.Problem reduces to $H|r_{\gamma}\rangle \propto \sum_{\beta=1}^{\beta_{max}} (-1)^{\theta_{\gamma,\beta}} |c_{\gamma,\beta}\rangle$

• fermionic commutation relations $\rightarrow (-1)^{\theta_{\gamma,\beta}}$

■ $\beta_{max} \sim N \rightarrow$ small "connectivity" in configuration space \rightarrow sparse matrix

How to calculate $|r_{\gamma,\beta}\rangle_f = R\{|c_{\gamma,\beta}(\uparrow)\rangle \otimes |c_{\gamma,\beta}(\downarrow)\rangle\}$? \Rightarrow apply all symmetries of $\mathcal{G}_{\mathbf{K}}$ to $|c_{\gamma,\beta}(\uparrow)\rangle$:

1. tabulate $R: |c(\uparrow)\rangle \longmapsto |r(\uparrow)\rangle$

2. store $\mathcal{R}_{\mathbf{K}}[(|c(\uparrow)\rangle] = \{g \in \mathcal{G}_{\mathbf{K}}; g(|c(\uparrow)\rangle) = |r(\uparrow)\rangle\}$

 \Rightarrow apply symmetries $\mathcal{R}_{\mathbf{K}}[|c_{\gamma,\beta}(\uparrow)\rangle]$ to $|c_{\gamma,\beta}(\downarrow)\rangle$

Worry about phase factors !

Transf. "generated states \Rightarrow representatives" involves phases:

 $\lambda_{\gamma,\beta} = (-1)^{\theta_{\gamma,\beta}} e(\tau_{\mathbf{K}}, g_P(g_{\gamma,\beta}^*)) \exp(i\mathbf{K} \cdot \mathbf{T}(g_{\gamma,\beta}^*))$ $g_{\gamma,\beta}^* \in \mathcal{R}_{\mathbf{K}}[|c_{\gamma,\beta}(\uparrow)\rangle] \text{ defined by } |r_{\gamma,\beta}\rangle_f = g_{\gamma,\beta}^*(|c_{\gamma,\beta}\rangle)$ $\Rightarrow \text{ store } \lambda_{\gamma,\beta} \text{ (in integer form)} + N\{|r_{\gamma,\beta}\rangle_f\} \rightarrow$ 64-bit integers

Exemple: Hilbert space of 10^{10} (10 billions) states / ~ 128 symmetries \rightarrow Reduced Hilbert space of 10^8 (100 millions) × ~ 40 images per state =4 Gw i.e. 32 Gb.

The link with experiments: Dynamical correlations calculated with Lanczos

Computing Dynamics Correlations - Outline

- 1. The continued-fraction method
- 2. Experimentally accessible fluctuations
- 3. The convergence of the method

Dynamical correlations

Time-dependent correlations

 $C(t) = \langle \Psi_0 | A(t) A^{\dagger}(0) | \Psi_0 \rangle$

Construct "initial state"

 A^{\dagger} is applied to GS to construct a new orthogonal state:

$$|\tilde{\Phi}_1\rangle = \frac{1}{(\langle \Psi_0 | A A^{\dagger} | \Psi_0 \rangle)^{1/2}} A^{\dagger} | \Psi_0 \rangle$$

- 1. matrix elements of A^{\dagger} calculated as for H
- 2. A^{\dagger} connects \neq symmetry sectors \rightarrow construct both Hilbert subspaces

$$\Rightarrow \quad \tilde{C}(z) = \langle \Psi_0 | A A^{\dagger} | \Psi_0 \rangle \langle \tilde{\Phi}_1 | (z' - H)^{-1} | \tilde{\Phi}_1 \rangle$$
where $z'_{\text{Section HExa}} Z_{\text{diagonalisations}} E_{\text{Model anczos methods Comparison with other methods - p.2}$

second Lanczos iterative procedure

Starting with $|\tilde{\Phi}_1\rangle$ as an initial state:

$$z' - \tilde{e}_1 \quad -\tilde{b}_2 \quad \dots \quad 0$$

$$z' - H = \begin{array}{cccc} -\tilde{b}_2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\tilde{b}_M \\ 0 & \dots & -\tilde{b}_M \quad z' - \tilde{e}_M \end{array}$$
(1)

 \rightarrow matrix expressed in the new basis $\{|\tilde{\Phi}_n\rangle\}$ with new choice $|\Phi_1\rangle = |\tilde{\Phi}_1\rangle$.

Recurrence relations

Straightforwardly:

$$\tilde{C}(z) = \langle \Psi_0 | A A^{\dagger} | \Psi_0 \rangle \, \frac{D_2}{D_1} \, ,$$

where D_n is defined as $D_n = \det \Delta_n$ Δ_n is the $(M - n + 1) \times (M - n + 1)$ matrix:

"Practical" formula

Determinants D_n (for a given z) calculated recursively:

$$D_n = (z' - \tilde{e}_n)D_{n+1} - \tilde{b}_{n+1}^2 D_{n+2}$$

or $1 \le n \le M - 2$.

Basic formula $!! \Rightarrow$ spectral weight computed from knowledge of tridiagonal matrix.

 $(D_M, D_{M-1}) \rightarrow D_{M-2} \rightarrow \ldots \rightarrow D_2 \rightarrow D_1$

Some "re-writing"

- Continued-fraction:

$$\tilde{C}(z) = \frac{\langle \Psi_0 | A A^{\dagger} | \Psi_0 \rangle}{z + E_0 - \tilde{e}_1 - \frac{\tilde{b}_2^2}{z + E_0 - \tilde{e}_2 - \frac{\tilde{b}_3^2}{z + E_0 - \tilde{e}_3 - \dots}}$$

- Physical meaning: $I(\omega) = \sum_{m} |\langle \Psi_m | A^{\dagger} | \Psi_0 \rangle|^2 \delta(\omega - E_m + E_0)$
 - 1. poles and weights \rightarrow dynamics of A^{\dagger}
 - 2. symmetry of $A^{\dagger} \rightarrow |\Psi_m\rangle \in$ one IR of symmetry group \rightarrow well defined quantum number & selection rules
 - 3. ! calculation of eigen-states/vectors not required !

Physical Quantities

Correlations	Notations	Operators	Experimer
Green function	$A({f k},\omega)$	$A = c_{\mathbf{k},\sigma}$	ARPES
Structure factors	$S{f q},\omega)$	$A = S^z_{\mathbf{q}}$	INS
Conductivity	$\sigma(\omega)$	$A = j_x$	Optics
4-spin corr.	$R(\omega)$	$\sum_{\mathbf{k}} R_{\mathbf{k}} \mathbf{S}_{\mathbf{k}} \cdot \mathbf{S}_{-\mathbf{k}}$	Raman

Dynamical correlations from experiment and theory -ARPES="Angular Resolved Photoemission Spectro."

-INS="Inelastic Neutron Scattering experiments"

-Raman="Two-magnon Raman Excention of the stand of the st

Problems of convergence ?

A priori, should worry about:

- 1. role of M, the # of Lanczos iterations ?
- 2. role of the imaginary part ϵ in $z = \omega + i\epsilon$?
- 3. role of system size ?

In fact, numerically EXACT results for a given system size

Convergence with size

Ex.: single hole in a 2D antiferromagnet

density of state: $N(\omega) = \sum_{\mathbf{k}} A(\mathbf{k}, \omega)$

 $|\Psi_0\rangle$ = Heisenberg GS $A = c_{i\sigma}$: hole creation

Local

Use of 2D "tilted" clusters: $N = n^2 + m^2$

> $\mathbf{T}_1 = (n, m)$ $T_2 = (-m, n)$ $|{f T}_1| = |{f T}_2|$ & $\mathbf{T}_1 \cdot \mathbf{T}_2 = 0$

D.P. et al., PRB (1993) Section IExact diagonalisations and Lanczos methodsComparison with other methods - p.3

Other numerical methods: CORE method – Density Matrix Renormalisation Group (DMRG) – Quantum Monte Carlo (QMC) Comparison with Lanczos

COntractor REnormalisation

CORE method (Auerbach et al., Capponi et al.)

- 1. "Macrosites" (= rungs, plaquettes, etc...) \rightarrow < degrees of freedom
- 2. construct effective H with longer-range & m-body interactions

DMRG (basics)

Numerical RG (Kondo problem): K.G. Wilson, Rev. Mod. Phys 47, 773 (1975) Density Matrix approach: S.R. White, PRL 69, 2863 (1992) 1. Start with block B and construct "super-block" B-site₁-site₂-B

- **2.** Diag. super-block Hamiltonian $\Rightarrow \Psi(i_1, i_2, i_3, i_4)$
- 3. Calculate reduced density matrix, $\rho(i_1, i_2, i'_1, i'_2) = \sum_{i_3, i_4} \Psi(i_1, i_2, i_3, i_4) \Psi(i'_1, i'_2, i_3, i_4)$ keep *m* eigenvectors of maximum weights

■ 4. Re-write all operators in new truncated basis; $B \Rightarrow B'=B$ -site \Rightarrow step 1.

Results & comparison with BA

Hubbard chain exactly solvable by Bethe-Ansatz $(U = 1, 2, 6, 10, \infty)$.

Note: open boundary condition used !

S. Ejima et al., Europhys. Lett., 70, 492 (2005)

Carlo methods (basics)

- 1. Metropolis algorithm
- 2. World-line algorithms
- 3. Continuous-time & SSE
- 4. Determinantal MC (fermions)

Monte Carlo method

"Non-local updates for QMC simulations", M. Troyer et al., p.156 in "The Monte Carlo Method in the Physical Sciences", AIP Conf. Proc., Vol. 690 (2003)

- Monte Carlo: iterative stochastic procedure in configuration space
 - Metropolis algorithm to sample probability distrib. p(i):

$$P(i \to j) = \min[1, \frac{p(j)}{p(i)}]$$

Metropolis, Rosenbluth, Rosenbluth, Teller & Teller (1953)

Quantum Monte Carlo

Generalization of MC to Quantum systems → Trotter-Susuki formula: M. Susuki, Prog. Theor. Phys. 56, 1454 (1976)

$$Z = Tr\left[\exp\left(-\frac{\beta}{M}(H_1 + H_2)\right)\right]^M$$
$$= Tr \left[\exp\left(-\frac{\beta}{M}H_1\right)\exp\left(-\frac{\beta}{M}H_2\right)\right]^M + O(1/M^2)$$
$$= \sum \langle \Psi_1 | e^{-\frac{\beta}{M}H_1} | \Psi_2 \rangle \dots \langle \Psi_{2M} | e^{-\frac{\beta}{M}H_2} | \Psi_1 \rangle$$

Quantum spins in d dimensions \Rightarrow classical problem in d+1 dimensions

Section IExact diagonalisations and Lanczos methodsComparison with other methods - p.42

World-line representations

ightarrow Evolution in imaginary time: time step $\Delta \tau = \beta/M$

Example: quantum spin chain

space direction

Continuoustime and SSE

Continuous time limit: ∆τ ⇒ 0, M ⇒ ∞
 ⇒ No systematic error! (Prokof'ev et al. (1996))
 Stochastic Series Expansions (Sandvik (1991))

 \Rightarrow Taylor expansion of Z

$$Z = Tr \exp(-\beta H) = \sum_{n} \frac{\beta^{n}}{n!} Tr(-H)^{n}$$

$$=\sum_{n} \frac{\beta^{n}}{n!} \sum_{n \in \mathbb{N}} \langle \Psi_{1} | - H_{b_{1}} | \Psi_{2} > \dots$$

 $\dots < \Psi_n | - H_{b_n} | \Psi_1 >$

World-line representations (II)

Comparison between discrete, continuous time and SSE QMC methods:

How to simulate fermions ?

Fermionic case - J.H. Hirsch, 1985 Hubbard-Stratonovich transformation

Idea: (i) use Trotter formula for "decoupling" *K* (kin.) & *V* (int.) (ii) decouple interaction term (iii) integrate out fermionic variables

$$e^{-\Delta\tau U n_{i,\uparrow} n_{i,\downarrow}} \propto \sum_{s=\pm 1} e^{-\Delta\tau s_{i,l}\lambda(n_{i,\uparrow} - n_{i,\downarrow})}$$
$$Z = \sum_{s=\pm 1} \det M^+(s) \det M^-(s)$$

Conclusions

Lanczos (ED)

- T = 0 unbiased computation
- Static & dynamical correlations
- Access to quantum # & symmetries
- Versatile method: frustration, long range inter., 1D, 2D. etc...
- Limited to small clusters → Finite size effects
- Possible ext. ⇒
 effective hamiltonians (CORE)

QMC

- Can reach Large systems
- Max Ent techniques for dynamics
- Finite T method (mostly)
- To beat "critical slowing down" → Loop algorithms
- When frustration or doping $(n \neq 1/2)$ Minus sign problem

DMRG

- Can reach Large systems
- T = 0 methods
- New developments for excited states and/or time-dependent quantities
- Very accurate in 1D (or quasi-1D) (frustration & doping possible) but problem when \rightarrow 2D