Section I Exact diagonalisations and Lanczos methods Comparison with other methods

Outline

- 1. Power method & Lanczos algorithm: how to get started
- 2. Finite size scaling: ^a simple example 1D chain of correlated fermions
- 3. How to implement it on ^a computer
- 4. Dynamical correlations
- 5. Comparison with other methods
	- DMRG method (basic notions)
	- Stochastic methods (see R. Scalettar's COUISE) Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.2

Some references

-*Exact diag:* "Simulations of pure and doped low-dimensional spin-1/2 systems", N. Laflorencie and D. Poilblanc, Chapter 5, Quantum Magnetism, Lecture Notes in Physics, Ed. U. Schollwöck et al., Spinger (2004)

-*DMRG:* Review by R.M. Noack in "Lectures on The Physics of Highly Correlated Electron Systems IX", AIP Conf. Proceedings Vol.789 (2004).

Some lattice models to study

Hubbard model (metal & insulator phases)

$$
H_U = H_K + \sum_{\mathbf{i}, \mathbf{j}} V_{\mathbf{i}\mathbf{j}} n_{\mathbf{i}} n_{\mathbf{j}}
$$

$$
H_K = \sum_{\mathbf{i}, \mathbf{j}, s} t_{\mathbf{i}\mathbf{j}} c_{\mathbf{i},s}^{\dagger} c_{\mathbf{j},s}
$$

Typically V_{ij} restricted to on-site repulsion (Hubbard U term) and nearest neighbor V

Strong coupling limits

Heisenberg model (insulator at half-filling)

$$
H_J = \sum_{\mathbf{i}, \mathbf{j}} J_{\mathbf{ij}} \, \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}
$$

■ Strong coupling: t-J

$$
H_{t-J} = H_J + \mathcal{P}H_K \mathcal{P},
$$

\n
$$
H_K = \sum_{\mathbf{i}, \mathbf{j}, s} t_{\mathbf{i}\mathbf{j}} c_{\mathbf{i},s}^{\dagger} c_{\mathbf{j},s}
$$

P Gutzwiller projector: $P = \prod_i(1 - n_i \cdot n_i)$

Finite size clusters

■ Correlated lattice models Goals: \Rightarrow ground state properties \Rightarrow low energy excitations

The simple power method

 H^n acts as a projector on the GS for $n \to \infty$

$$
|\Phi_n\rangle = (H - \lambda)^n |\Phi_0\rangle,
$$

Then: $\bigl\langle \Phi_n|H|\Phi_n \bigr\rangle/\bigl\langle \Phi_n|\Phi_n \bigr\rangle \to E_{\rm GS}$

The Lanczos algorithm

Build ^a tri-diagonal matrix

$$
H|\Phi_1\rangle = e_1|\Phi_1\rangle + b_2|\Phi_2\rangle,
$$

:

.

$$
H|\Phi_n\rangle = e_n|\Phi_n\rangle + b_{n+1}|\Phi_{n+1}\rangle
$$

+ $b_n|\Phi_{n-1}\rangle$

Recurrent procedure: $e_n = \langle \Phi_n | H | \Phi_n \rangle$

References

- C. Lanczos, J. Res. Natl. Bur. Stand. **⁴⁵**, 255 (1950)
- J.C. Bonner and M.E. Fisher, Phys. Rev. **¹³⁵**, 640 (1964)

 $|\phi_{n+1}\rangle = H|\Phi_n\rangle-e_n|\Phi_n\rangle-b_n|\Phi_{n-1}\rangle$ J. Oitmaa and D.D. Betts, Can. J. Phys. **⁵⁶**, 897 (1978)

Use of symmetries

Goal: Block-diagonalize the H matrix

$$
J_{\mathbf{xy}} = J(\mathbf{x} - \mathbf{y})
$$

and

 $\forall g_P \in \mathcal{G}_P, \quad J(g_P(\mathbf{r})) = J(\mathbf{r}).$

Space Group: $\mathcal{G} = \mathcal{G}_P \otimes \mathcal{T}$ **Transl. group:** $\mathcal{T} = \{t_p\}, p = 1, ..., N$ **Point group:** $\mathcal{G}_P = C_{4v}$ (square lattice) Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.9

A simple example: the 2D t-J model

N=26 N=32

Use of "Block theorem"

$$
\mathbf{K} = \sum_{\mu} n_{\mu} \mathbf{K}_{\mu},
$$

where \mathbf{K}_{μ} reciprocal lattice vectors

$$
\mathbf{K}_{\mu} = \frac{2\pi}{N} \mathbf{T}_{\mu} \wedge \mathbf{e}_{z}
$$

 $\mathcal{G}_{\mathbf{K}}^{P},$ little group of \mathbf{K} ($\mathcal{G}_{\mathbf{K}}^{P}\subset\mathcal{G}_{P}$), containing q_P such that $g_P(K) = K$.

> The relevant subgroup of \mathcal{G} : $\mathcal{G}_\mathbf{K} = \mathcal{G}^P_\mathbf{K} \otimes \mathcal{T}$.

Example: the checkerboar d lattice

 $\mathbf{K}=(\pi/2,\pi/2)\colon\mathcal{G}_{\mathbf{K}}\equiv\Omega_{\text{section}}\Omega_{\text{M}}\Omega_{\text{N}}$ and $\Omega_{\text{M}}\Omega_{\text{M}}$ nand Ω_{M} nand Ω_{M} and Ω_{M} and Ω_{M} and Ω_{M} other methods p.12

Change boundary conditions

- translation vectors of the form $\mathbf{T}_{\mu} = (0, ..., 0, L_{\mu}, 0, ..., 0)$

- flux Φ (in unit of the flux quantum) through one hole of d-dimensional torus \longrightarrow \rightarrow twist in the boundary conditions along direction e_μ :

$$
t_{\mathbf{xy}} c_{\mathbf{x},s}^{\dagger} c_{\mathbf{y},s} \to t_{\mathbf{xy}} c_{\mathbf{x},s}^{\dagger} c_{\mathbf{y},s} \exp\left(2i\pi \frac{\Phi}{L_{\mu}} (\mathbf{x} - \mathbf{y}) \cdot \mathbf{e}_{\mu}\right)
$$

Finite size scaling: Simple example: ^a one dimensional system of correlated fermions

1D correlated fermions: Hubbard chain

1D systems: spin and charge collective modes with velocities u_{ρ} and u_{σ}

> Density of state: $N(\omega) \sim |\omega|^{\alpha}$ α α and K_ρ non-universal exponents: $\alpha =$ $=\frac{1}{4}(K_{\rho}+\frac{1}{K_{\rho}}-2)$

Practical formula: $\pi D = 2u_\rho K_\rho$

 \longrightarrow u_p and D obtained on finite systems:

■ "Drude weight": $D = \frac{\partial^2 (E_0/L)}{\partial \phi^2}$ where $\phi = 2\pi \frac{\Phi}{L}$. ■ Velocity u_{ρ} : ΔE between $k = 0$ and $k = 2\pi/L$

Finite size in 1D

conformal invariance implies: $\frac{\pi}{2} \frac{u_\rho}{K_\rho} = \frac{1}{\kappa}$

compressibility $\kappa^{-1} = \frac{1}{2} \frac{\partial^2 (E_0/L)}{\partial n^2}$ computed numerically

 \longrightarrow \rightarrow check consistency of LL picture

n finite size scaling of GS energy:

$$
\tfrac{E_0(L)}{L}=e_\infty-\tfrac{\pi(u_\rho+u_\sigma)}{6L^2}c+\mathcal{O}(1/L^2)
$$

 \blacksquare central charge c given by symmetry spin velocity u_{σ} calculated independently.

Results & comparison with BA

Spinless fermion chain (t-V model) exactly solvable by Bethe-Ansatz $(n = 1/2)$

Note: periodic boundary conditions used

S. Capponi, Thèse 1999 (Toulouse)

Partial summary

Advantages

Non-perturbative method !!

- Comparisons to experiments:
	- Fits \rightarrow microscopic parameters
	- Structure factors (ordering, etc...)
	- **Thermodynamics**
	- Spectroscopies (ARPES, INS, $\sigma(\omega)$,...)

Versatile method ! Extensions to many models - e.g. models with phonons

Limitations

- Small clusters !!
- ■Simple models (with few degree of freedom/ / site)

A little practice: How to implement the Lanczos method on ^a computer ?

The Hilbert space

 P^N states $\propto \exp N$!!

Hubbard $\rightarrow P=4; \emptyset,$ $\uparrow, \, \downarrow, \, \uparrow \downarrow$ **Heisenberg:** \rightarrow $P = 2; \uparrow, \downarrow$ t-J: $\rightarrow P=3; \emptyset, \uparrow, \downarrow$

Digital coding: $|c\rangle = |s_1, ..., s_i, ..., s_N\rangle \Rightarrow 1$ integer Heisenberg: $N(\ket{c}) = \sum_1^N 2^{i-1} \sigma_i$, with $\sigma_i = 0, \, 1$ t-J: $N(\ket{c}) = \sum_1^N 2^{2(i-1)} \sigma_i$ with $\sigma_i = 0$ ="00", 1="01", 2="10" N=4 states: $|\uparrow,\emptyset,\uparrow,\downarrow\rangle = 0_{64}...0_{9}0_{8}1_{7}1_{6}0_{5}0_{4}0_{3}1_{2}0_{1}$ SectionIExact diagonalisations and Lanczos methodsComparison with other methods – p.20

The irreducible representations

- **.** Symmetry sector: $l = (\mathbf{K}, \tau_{\mathbf{K}})$ $\tau_{\mathbf{K}}$ irreducible representations (IR) of $\mathcal{G}^{P}_{\mathbf{K}}$. "symmetric" state $|\alpha\rangle\equiv|\alpha\rangle\{|c\rangle\}$: $\sum_{g_P \in \mathcal{G}_{\mathbf{K}}^P, t \in \mathcal{T}} e(\tau_{\mathbf{K}}, g_P) \exp{(i \mathbf{K} \cdot \mathbf{T}_t)} \, (g_P \, t)(|c \rangle),$ where $e(\tau_{\mathbf{K}}, g_P)$ = characters of IR $\tau_{\mathbf{K}}$
- \Rightarrow keep only one state $|r\rangle = R(|c\rangle)$ among related states $(q_P t)(|c\rangle)$
- Convenient choice: smallest integer $N(|c\rangle)$ i.e. $N(|r\rangle) = \min_{g \in \mathcal{G}_{\mathbf{K}}} \{N(g(|c\rangle))\}$

Set of all representatives $A_l = \{ |r\rangle \}$ \Rightarrow Hilbert space reduced by card \log \log \log \log \log

How to construct "representatives"

.The simplest case: Hubbard-like models $|c\rangle = |c(\uparrow)\rangle \otimes |c(\downarrow)\rangle$ $N(|c\rangle) = N'(|c(\uparrow)\rangle) \times 2^N + N'(|c(\downarrow)\rangle)$

Minimisation of $N(g(|c\rangle))$ over $g \in \mathcal{G}_{\mathbf{K}}$:

- 1. generate all \uparrow spins configs \rightarrow $\ket{r(\uparrow)}$ kept,
- 2. store $\mathcal{E}_{\mathbf{K}}[|r(\boldsymbol{\uparrow})\rangle]\subset \mathcal{G}_{\mathbf{K}}$ $\mathcal{\mid}\left. r(\boldsymbol{\uparrow})\right\rangle$ invariant,
- 3. construct full set of configs as $|r(\uparrow)\rangle \otimes |c(\downarrow)\rangle$,
- 4. apply all elts of $\mathcal{E}_{\mathbf{K}}[|r(\boldsymbol{\uparrow})\rangle]$ to \downarrow part,
- 5. only retain $|c(\downarrow)\rangle$ such: $\forall q' \in \mathcal{E}_{\mathbf{K}}[r(\uparrow))] \quad N'(\vert_{\mathfrak{E}^{(t)}[t]}$ diagonalisations and Langus' methods – p.22

Hamiltonian matrix

Problem reduces to $H|r_\gamma\rangle \propto \sum_{\beta=1}^{\beta_{max}}$ $\frac{\beta_{max}}{\beta=1}(-1)^\theta$ $\gamma,\beta\left\vert C_{\gamma,\beta}\right\rangle$

fermionic commutation relations $\rightarrow (-1)^{\theta_{\gamma,\beta}}$

 β_{max} $\sim N \to$ \rightarrow small "connectivity" in configuration space \longrightarrow \rightarrow sparse matrix

How to calculate $|r_{\gamma,\beta}\rangle_{f}=R\{|c_{\gamma,\beta}(\uparrow)\rangle\otimes |c_{\gamma,\beta}(\downarrow)\rangle\}$? \Rightarrow apply all symmetries of $\mathcal{G}_{\mathbf{K}}$ to $|c_{\gamma,\beta}(\uparrow)\rangle$:

1. tabulate $R: \; |c(\uparrow)\rangle$ 7−→ \rightarrow $|r(1)\rangle$

2. store $\mathcal{R}_{\mathbf{K}}[(\ket{c(\uparrow)})] \!=\! \{g \in \mathcal{G}_{\mathbf{K}}; g(\ket{c(\uparrow)}) \!=\! \ket{r(\uparrow)}\}$

 \Rightarrow apply symmetries $\mathcal{R}_{\mathbf{K}}[|c_{\gamma,\beta}(\uparrow)\rangle]$ to $|c_{\gamma,\beta}(\downarrow)\rangle$

Worry about phase factors !

Transf. "generated states \Rightarrow representatives" involves phases:

 $\lambda_{\gamma,\beta} = (-1)^{\theta_{\gamma,\beta}} e(\tau_{\mathbf{K}}, g_P(g_{\gamma,\beta}^*)) \exp(i \mathbf{K} \cdot \mathbf{T}(g_{\gamma,\beta}^*))$ $g_{\gamma,\beta}^* \in \mathcal{R}_{\mathbf{K}}[|c_{\gamma,\beta}(\uparrow)\rangle]$ defined by $|r_{\gamma,\beta}\rangle_f = g_{\gamma,\beta}^*(|c_{\gamma,\beta}\rangle)$ \Rightarrow store $\lambda_{\gamma,\beta}$ (in integer form) $+$ $N\{|r_{\gamma,\beta}\rangle_{f}\}$ \rightarrow 64-bit integers

Exemple: Hilbert space of 10^{10} (10 billions) states $\prime\sim\,128$ symmetries \rightarrow Reduced Hilbert space of 10^8 (100 millions) $\times \sim 40$ images per state =4 Gw **i.e.** 32 Gb. Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.24

The link with experiments: Dynamical correlations calculated with Lanczos

Computing Dynamics Correlations Outline

- 1. The continued-fraction method
- 2. Experimentally accessible fluctuations
- 3. The con vergence of the method

Dynamical correlations

Time-dependent correlations

 $C(t)$ $=\langle\Psi_0|A(t)A^\dagger(0)|\Psi_0\rangle$

Fourier transform \Rightarrow frequency space: $z=\omega+i\epsilon$ $\tilde C(z)$ $= \langle \Psi_0 | A$ 1 $z-H+E_0$ \overline{A} $^\dagger|\Psi_0\rangle$ ⇓ Spectral function $I(\omega)$ = − 1 π lim $\epsilon{\rightarrow}0$ $\mathsf{Im}\, \tilde{C}(\omega + i \epsilon)$

Construct "initial state"

 A^{\dagger} is applied to GS to construct a new orthogonal state:

$$
|\tilde{\Phi}_1\rangle=\frac{1}{(\langle\Psi_0|AA^\dagger|\Psi_0\rangle)^{1/2}}A^\dagger|\Psi_0\rangle
$$

- 1. matrix elements of A^\dagger calculated as for H
- 2. A^\dagger connects \neq symmetry sectors \rightarrow construct both Hilber t subspaces

$$
\Rightarrow \hspace{2mm} \tilde{C}(z) = \langle \Psi_0 | A A^\dagger | \Psi_0 \rangle \langle \tilde{\Phi}_1 | (z'-H)^{-1} | \tilde{\Phi}_1 \rangle \\ \text{where} \hspace{2mm} z'_\text{section+Exa} \tilde{z}_{\text{diagonal}} \overline{f}_{\text{final}} \overline{f}_{\text{full}} \text{ and } \overline{f}_{\text{full}} \text{ is a nontrivial case, with other methods --p.25.}
$$

second Lanczos iterative procedure

Starting with $|\tilde{\Phi}\>$ $_1\rangle$ as an initial state:

$$
z' - \tilde{e}_1 - \tilde{b}_2 \qquad \dots \qquad 0
$$

\n
$$
z' - H = \begin{bmatrix} -\tilde{b}_2 & \cdots & \cdots & \vdots \\ \vdots & \ddots & \ddots & -\tilde{b}_M \\ 0 & \cdots & -\tilde{b}_M & z' - \tilde{e}_M \end{bmatrix}
$$
 (1)

 \longrightarrow \rightarrow matrix expressed in the new basis $\{|\tilde{\Phi}\rangle\}$ $_{n}\rangle\}$ with new choice $|\Phi_1\rangle = |\tilde{\Phi}\rangle$ $_1\rangle$.

Recurrence relations

Straightforwardly:

$$
\tilde{C}(z) = \langle \Psi_0 | AA^\dagger | \Psi_0 \rangle \, \frac{D_2}{D_1} \;,
$$

where D_n is defined as $D_n=$ det Δ_n Δ_n is the $(M$ $(n + 1) \times (M)$ $(n + 1)$ matrix:

"Practical" formula

Determinants D_n (for a given $z)$ calculated recursively:

$$
D_n = (z' - \tilde{e}_n)D_{n+1} - \tilde{b}_{n+1}^2 D_{n+2}
$$

for $1 \le n \le M - 2$.

Basic for mula !! ⇒ spectral weight computed from knowledge of tridiagonal matrix.

 (D_M,D_{M-1}) $\rightarrow D_{M-2} \rightarrow \ldots \rightarrow D_2 \rightarrow D_1$

Some "re-writing"

- Continued-fraction:

$$
\tilde{C}(z) = \frac{\langle \Psi_0 | AA^\dagger | \Psi_0 \rangle}{z + E_0 - \tilde{e}_1 - \frac{\tilde{b}_2^2}{z + E_0 - \tilde{e}_2 - \frac{\tilde{b}_3^2}{z + E_0 - \tilde{e}_3 - \dots}}
$$

- - Physical meaning: $I(\omega) = \sum_m |\langle \Psi_m |A^\dagger |\Psi_0\rangle|^2 \delta(\omega - E_m + E_0)$
	- 1. $\,$ poles and weights \rightarrow dynamics of A^{\dagger}
	- 2. $\,$ symmetry of $A^{\dagger} \rightarrow \ket{\Psi_m} \in$ one IR of symmetry group \rightarrow well defined quantum number & selection rules
	- 3. ! calculation of eigen-states/vectors not required !

Physical Quantities

Dynamical correlations from experiment and theory -ARPES="Angular Resolved Photoemission Spectro."

-INS="Inelastic Neutron Scattering experiments"

-Raman="Two-magnon Raman Escattering" and Socientic Scatter diagnosis methodsComparison with other methods – p.33

Problems of convergence ?

A priori, should worry about:

- 1. role of $M,$ the # of Lanczos iterations ?
- 2. role of the imaginary part ϵ in $z=\omega+i\epsilon$?
- 3. role of system size ?

In fact, numerically EXACT results for a given system size

Convergence with size

Ex.: single hole in a 2D antiferromagnet **LOCAL**

density of state: $N(\omega)$ = $\sum_{\mathbf{k}} A(\mathbf{k},\omega)$

 $|\Psi_0\rangle$ = Heisenberg GS $A = c_{i\sigma}$: hole creation

Use of 2D "tilted" clusters: $N=n^2+m^2$

> ${\bf T}_1 = (n,m)$ $\mathbf{T}_2=(-m,n)$ $|T_1| = |T_2|$ & $\mathbf{T}_1 \cdot \mathbf{T}_2 = 0$

D.P. et al., PRB (1993)

Other numerical methods: CORE method – Density Matrix Renormalisation Group (DMRG) – Quantum Monte Carlo (QMC) Comparison with Lanczos

COntractor REnormalisation

CORE method (Auerbach et al., Capponi et al.)

- 1. "Macrosites" (= rungs, plaquettes, etc...) $\;\rightarrow$ < degrees of freedom
- 2. construct effectiv e H with longer-range & m-body interactions

DMRG (basics)

Numerical RG (Kondo problem): K.G. Wilson, Rev. Mod. Phys **⁴⁷**, 773 (1975) Density Matrix approach: S.R. White, PRL **⁶⁹**, ²⁸⁶³ (1992) 1. Start with block B and construct "super-block" $B\text{-site}_1\text{-site}_2\text{-B}$

- 2. Diag. super-block Hamiltonian $\Rightarrow \Psi(i_1,i_2,i_3,i_4)$
- 3. Calculate reduced density matrix, $\rho(i_1, i_2, i'_1, i'_2) = \sum_{i_3, i_4} \Psi(i_1, i_2, i_3, i_4) \Psi(i'_1, i'_2, i_3, i_4)$ keep m eigenvectors of maximum weights

4. Re-write all operators in new truncated basis; $\mathsf{B} \Rightarrow \mathsf{B}'\texttt{=} \mathsf{B}\text{-}\mathsf{s}$ ite \Rightarrow step 1.

Results & comparison with BA

Hubbard chain exactly solvable by Bethe-Ansatz $(U = 1, 2, 6, 10, \infty).$

Note: open boundary condition used !

S. Ejima et al., Europhys. Lett., 70, 492 (2005)

Quantum Monte Carlo methods (basics)

- 1. Metropolis algorithm
- 2. World-line algorithms
- 3. Continuous-time & SSE
- 4. Determinantal MC (fermions)

Monte Carlo method

"Non-local updates for QMC simulations", M. Troyer et al., p.156 in "The Monte Carlo Method in the Physical Sciences", AIP Conf. Proc., Vol. 690 (2003)

- - Monte Carlo: iterative stochastic procedure in configuration space
	- - Metropolis algorithm to sample probability distrib. $p(i)$:

$$
P(i \to j) = \min[1, \tfrac{p(j)}{p(i)}]
$$

Metropolis, Rosenbluth, Rosenbluth, Teller & Teller (1953)

Quantum Monte Carlo

Generalization of MC to Quantum systems \rightarrow Trotter-Susuki formula: M. Susuki, Prog. Theor. Phys. **⁵⁶**, 1454 (1976)

$$
Z = Tr \left[\exp\left(-\frac{\beta}{M}(H_1 + H_2)\right)\right]^M
$$

= Tr \left[\exp\left(-\frac{\beta}{M}H_1\right)\exp\left(-\frac{\beta}{M}H_2\right)\right]^M + O(1/M^2)
= $\sum \langle \Psi_1|e^{-\frac{\beta}{M}H_1}|\Psi_2\rangle...\langle \Psi_{2M}|e^{-\frac{\beta}{M}H_2}|\Psi_1\rangle$

Quantum spins in d dimensions \Rightarrow classical problem in $d+1$ dimensions

Section IExact diagonalisations and Lanczos methodsComparison with other methods $- p.4$

World-line representations

 \longrightarrow \rightarrow Evolution in imaginary time: time step $\Delta \tau = \beta / M$

Example: quantum spin chain

space direction

Continuoustime and SSE

Continuous time limit: $\Delta \tau \Rightarrow 0, \, M \Rightarrow \infty$ \Rightarrow No systematic error! (Prokof'ev et al. (1996)) ■ Stochastic Series Expansions (Sandvik (1991)) \Rightarrow Taylor expansion of Z

$$
Z = Tr \exp(-\beta H) = \sum_{n} \frac{\beta^{n}}{n!} Tr(-H)^{n}
$$

$$
=\sum_{n}\frac{\beta^{n}}{n!} \sum \left\langle \Psi_{1}|-H_{b_{1}}|\Psi_{2}>\dots \right\rangle
$$

...
$$
\left\langle \Psi_{n}\right| -H_{b_{n}}|\Psi_{1}>
$$

Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.44

World-line representations (II)

Comparison between discrete, continuous time and SSE QMC methods:

How to simulate fermions ?

Fermionic case - J.H. Hirsch, 1985 **Hubbard-Stratonovich transformation**

Idea: (i) use Trotter formula for "decoupling" K (kin.) & V (int.) (ii) decouple interaction term (iii) integrate out fermionic variables

$$
e^{-\Delta \tau U n_{i,\uparrow} n_{i,\downarrow}} \propto \sum_{s=\pm 1} e^{-\Delta \tau s_{i,l} \lambda (n_{i,\uparrow} - n_{i,\downarrow})}
$$

$$
Z = \sum_{s=\pm 1} \det M^+(s) \det M^-(s)
$$

Conclusions

Lanczos (ED)

- $T=0$ unbiased computation
- Static & **dynamical** correlations
- Access to quantum # & symmetries
- Versatile method: frustration, long range inter., 1D, 2D. etc...
- Limited to small clusters → Finite size effects
- Possibleext. ⇒effective hamiltonians (CORE)

QMC

- Can reach Large systems
- Max Ent techniques for dynamics
- Finite T method (mostly)
- To beat "critical slowing down" \rightarrow Loop algorithms
- When frustration or doping ($n\,\neq\,1/2)$ Minus sign problem

DMRG

- Can reach Large systems
- $T=0$ methods
- Ne w de velopments for excited states and/or time-dependent quantities
- Ver y accurate in 1D (or quasi-1D) (frustration & doping possible) but <mark>problem when</mark> \rightarrow 2D