
Section I
Exact diagonalisations
and Lanczos methods
Comparison with other

methods
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Outline

1. Power method & Lanczos algorithm: how to
get started

2. Finite size scaling: a simple example – 1D
chain of correlated fermions

3. How to implement it on a computer

4. Dynamical correlations

5. Comparison with other methods
DMRG method (basic notions)
Stochastic methods (see R. Scalettar’s
Course) Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.2



Some references

-Exact diag: "Simulations of pure and doped
low-dimensional spin-1/2 systems",

N. Laflorencie and D. Poilblanc, Chapter 5,
Quantum Magnetism, Lecture Notes in Physics,

Ed. U. Schollwöck et al., Spinger (2004)

-DMRG: Review by R.M. Noack in ”Lectures on The
Physics of Highly Correlated Electron Systems IX”, AIP

Conf. Proceedings Vol.789 (2004).
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Some lattice models
to study

Hubbard model (metal & insulator phases)

HU = HK +
∑

i,j

Vijninj

HK =
∑

i,j,s

tij c
†
i,scj,s

Typically Vij restricted to on-site repulsion
(Hubbard U term) and nearest neighbor V
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Strong coupling
limits

Heisenberg model (insulator at
half-filling)

HJ =
∑

i,j

Jij Si · Sj

Strong coupling: t-J

Ht−J = HJ + PHKP ,

HK =
∑

i,j,s

tij c
†
i,scj,s

P Gutzwiller projector: P =
∏

i(1 − ni↑ni↓)
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Finite size clusters
→ Computation on finite size clusters

ladder 

chain (1D)
x

y

two−dimensionnal (2D)

Correlated lattice models

Goals: ⇒ ground state properties

⇒ low energy excitations
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The simple power
method

Hn acts as a projector on the GS for n → ∞

|Φn

〉

= (H − λ)n|Φ0 > ,

Then:
〈

Φn|H|Φn

〉

/
〈

Φn|Φn

〉

→ EGS
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The Lanczos
algorithm

Build a tri-diagonal matrix

H|Φ1〉 = e1|Φ1〉 + b2|Φ2〉,
...

H|Φn〉 = en|Φn〉 + bn+1|Φn+1〉

+ bn|Φn−1〉

Recurrent procedure:
en = 〈Φn|H|Φn〉

|φn+1〉 = H|Φn〉−en|Φn〉−bn|Φn−1〉

References

C. Lanczos, J. Res.
Natl. Bur. Stand. 45,
255 (1950)

J.C. Bonner and M.E.
Fisher, Phys. Rev.
135, 640 (1964)

J. Oitmaa and D.D.
Betts, Can. J. Phys.
56, 897 (1978)
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Use of symmetries

Goal: Block-diagonalize the H matrix

Jxy = J(x − y)

and

∀gP ∈ GP , J(gP (r)) = J(r).

Space Group: G = GP ⊗ T

Transl. group: T = {tp}, p = 1, ..., N

Point group: GP = C4v (square lat-
tice) Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.9



A simple example:
the 2D t-J model

N=26                           N=32

Nh /
√

N ×
√

N Hilbert space for SZ = Smin

Z
Symmetry group Reduced HS

1 / 4 × 4 102 960 T16 6 435

1 /
√

26 ×
√

26 135 207 800 T26 5 200 300

1 /
√

32 ×
√

32 9 617 286 240 T32 ⊗ C4v 37 596 701∗

4 /
√

26 ×
√

26 10 546 208 400 T26 ⊗ C4 ⊗ I2 50 717 244
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Use of "Block
theorem"

K =
∑

µ nµKµ ,

where Kµ reciprocal lattice vectors
Kµ = 2π

N Tµ ∧ ez

GP
K, little group of K (GP

K ⊂ GP ), containing
gP such that
gP (K) = K .

The relevant subgroup of G:
GK = GP

K ⊗ T .
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Example: the
checkerboard lattice

x

y

(a) (b)

Γ=(0,0)

(π,π)(0,π) M=

(π,0)

X

.N = 32 sites “checkerboard” cluster

K = (0, 0) or (π, π): GK = C4v ⊗ T16

K = (0, π) or (π, 0): GK = C2v ⊗ T16

K = (π/2, π/2): GK = Cv ⊗ T16Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.12



Change boundary
conditions

- translation vectors of the form
Tµ = (0, ..., 0, Lµ, 0, ..., 0)

- flux Φ (in unit of the flux quantum) through one
hole of d-dimensional torus
→ twist in the boundary conditions along
direction eµ:

txy c†x,scy,s → txy c†x,scy,s exp (2iπ
Φ

Lµ
(x − y) · eµ)
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Finite size scaling:
Simple example: a one dimensional
system of correlated fermions
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1D correlated
fermions: Hubbard
chain

1D systems: spin and charge collective modes
with velocities uρ and uσ

Density of state: N(ω) ∼ |ω|α

α and Kρ non-universal exponents:
α = 1

4(Kρ + 1
Kρ

− 2)

Practical formula: πD = 2uρKρ

→ uρ and D obtained on finite systems:

"Drude weight": D = ∂2(E0/L)
∂φ2 where φ = 2πΦ

L .

Velocity uρ: ∆E between k = 0 and k = 2π/L
eigen-states Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.15



Finite size in 1D

conformal invariance implies: π
2

uρ

Kρ
= 1

κ

compressibility κ−1 = 1
2

∂2(E0/L)
∂n2 computed

numerically
→ check consistency of LL picture

finite size scaling of GS energy:
E0(L)

L = e∞ − π(uρ+uσ)
6L2 c + O(1/L2)

central charge c given by symmetry
spin velocity uσ calculated independently.
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Results &
comparison with BA

Spinless fermion chain (t-V model) exactly
solvable by Bethe-Ansatz (n = 1/2)

Note: periodic boundary conditions used
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Partial summary
Advantages

Non-perturbative method !!

Comparisons to
experiments:

Fits → microscopic
parameters

Structure factors
(ordering, etc...)

Thermodynamics

Spectroscopies
(ARPES, INS, σ(ω),...)

Versatile method !
Extensions to many

models - e.g. models
with phonons

Limitations

Small clusters !!

Simple models
(with few degree
of freedom/ / site)
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A little practice:
How to implement the Lanczos method
on a computer ?
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The Hilbert space
PN states ∝ exp N !!

Hubbard → P = 4; ∅, ↑, ↓, ↑↓

Heisenberg: → P = 2; ↑, ↓

t-J: → P = 3; ∅, ↑, ↓

Digital coding: |c〉 = |s1, ..., si, ..., sN〉 ⇒ 1 integer
Heisenberg: N(|c〉) =

∑N
1 2i−1σi, with σi = 0, 1

t-J: N(|c〉) =
∑N

1 22(i−1)σi

with σi = 0="00", 1="01", 2="10"
N=4 states: | ↑, ∅, ↑, ↓〉 = 064...090817160504031201
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The irreducible
representations

.Symmetry sector: l = (K, τK)

τK irreducible representations (IR) of GP
K

.“symmetric” state |α〉 ≡ |α〉{|c〉}:
∑

gP∈GP
K

,t∈T e(τK, gP ) exp (iK · Tt) (gP t)(|c〉),

where e(τK, gP ) = characters of IR τK

⇒ keep only one state |r〉 = R(|c〉)
among related states (gP t)(|c〉)

.Convenient choice: smallest integer
N(|c〉) i.e. N(|r〉) = ming∈GK

{N(g(|c〉))}

Set of all representatives Al = {|r〉}
⇒ Hilbert space reduced by card(GK)
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How to construct
"representatives"

.The simplest case: Hubbard-like models
|c〉 = |c(↑)〉 ⊗ |c(↓)〉

N(|c〉) = N ′(|c(↑)〉) × 2N + N ′(|c(↓)〉)

.Minimisation of N(g(|c〉)) over g ∈ GK:

1. generate all ↑ spins configs → |r(↑)〉 kept,

2. store EK[|r(↑)〉] ⊂ GK / |r(↑)〉 invariant,

3. construct full set of configs as |r(↑)〉 ⊗ |c(↓)〉,

4. apply all elts of EK[|r(↑)〉] to ↓ part,

5. only retain |c(↓)〉 such:
∀g′ ∈ EK[r(↑)〉] N ′(|c(↓)〉) ≤ N ′[g′(|c(↓)〉)] .Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.22



Hamiltonian matrix
.Problem reduces to H|rγ〉 ∝

∑βmax

β=1 (−1)θγ,β |cγ,β〉

fermionic commutation relations → (−1)θγ,β

βmax ∼ N → small "connectivity" in
configuration space → sparse matrix

How to calculate |rγ,β〉f = R{|cγ,β(↑)〉 ⊗ |cγ,β(↓)〉}?
⇒ apply all symmetries of GK to |cγ,β(↑)〉 :

1. tabulate R : |c(↑)〉 7−→ |r(↑)〉

2. store RK[(|c(↑)〉]={g ∈ GK; g(|c(↑)〉)= |r(↑)〉}

⇒ apply symmetries RK[|cγ,β(↑)〉] to |cγ,β(↓)〉
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Worry about phase
factors !

Transf. "generated states ⇒ representatives"
involves phases:

λγ,β = (−1)θγ,βe(τK, gP (g∗γ,β)) exp (iK · T(g∗γ,β))

g∗γ,β ∈ RK[|cγ,β(↑)〉] defined by |rγ,β〉f = g∗γ,β(|cγ,β〉)

⇒ store λγ,β (in integer form) + N{|rγ,β〉f} →
64-bit integers

Exemple: Hilbert space of 1010 (10 billions) states
/ ∼ 128 symmetries → Reduced Hilbert space of
108 (100 millions) × ∼ 40 images per state =4 Gw
i.e. 32 Gb. Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.24



The link with experiments:

Dynamical correlations calculated

with Lanczos
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Computing Dynamics
Correlations - Outline

1. The continued-fraction method

2. Experimentally accessible fluctua-
tions

3. The convergence of the method
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Dynamical
correlations

Time-dependent correlations

C(t) = 〈Ψ0|A(t)A†(0)|Ψ0〉

Fourier transform ⇒ frequency space: z = ω + iε

C̃(z) = 〈Ψ0|A
1

z − H + E0

A†|Ψ0〉

⇓

Spectral function

I(ω) = −
1

π
lim
ε→0

Im C̃(ω + iε)
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Construct "initial
state"

A† is applied to GS to construct a new
orthogonal state:

|Φ̃1〉 =
1

(〈Ψ0|AA†|Ψ0〉)1/2
A†|Ψ0〉

1. matrix elements of A† calculated as for H

2. A† connects 6= symmetry sectors → construct
both Hilbert subspaces

⇒ C̃(z) = 〈Ψ0|AA†|Ψ0〉〈Φ̃1|(z
′ − H)−1|Φ̃1〉

where z′ = z + E0.Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.28



second Lanczos
iterative procedure

Starting with |Φ̃1〉 as an initial state:

z′ − H =

z′ − ẽ1 −b̃2 . . . 0

−b̃2
. . . . . . ...

... . . . . . . −b̃M

0 . . . −b̃M z′ − ẽM

(1)

→ matrix expressed in the new basis {|Φ̃n〉} with
new choice |Φ1〉 = |Φ̃1〉.
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Recurrence relations
Straightforwardly:

C̃(z) = 〈Ψ0|AA†|Ψ0〉
D2

D1
,

where Dn is defined as Dn = det ∆n

∆n is the (M − n + 1) × (M − n + 1) matrix:

∆n =

z′ − ẽn −b̃n+1 . . . 0

−b̃n+1
. . . . . . ...

... . . . . . . −b̃M

0 . . . −b̃M z′ − ẽM

(2)
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"Practical" formula
Determinants Dn (for a given z) calculated
recursively:

Dn = (z′ − ẽn)Dn+1 − b̃2
n+1Dn+2

for 1 ≤ n ≤ M − 2.

Basic formula !! ⇒ spectral weight computed
from knowledge of tridiagonal matrix.

(DM , DM−1) → DM−2 → . . . → D2 → D1
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Some "re-writing"
- Continued-fraction:

C̃(z) =
〈Ψ0|AA†|Ψ0〉

z + E0 − ẽ1 −
b̃2
2

z + E0 − ẽ2 −
b̃2
3

z + E0 − ẽ3 − . . .

- Physical meaning:
I(ω) =

∑

m |〈Ψm|A
†|Ψ0〉|

2δ(ω − Em + E0)

1. poles and weights → dynamics of A†

2. symmetry of A† → |Ψm〉 ∈ one IR of symmetry group
→ well defined quantum number & selection rules

3. ! calculation of eigen-states/vectors not required !
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Physical Quantities

Correlations Notations Operators Experiments

Green function A(k, ω) A = ck,σ ARPES

Structure factors Sq, ω) A = Sz
q INS

Conductivity σ(ω) A = jx Optics

4-spin corr. R(ω)
∑

k RkSk · S−k Raman

Dynamical correlations from experiment and theory
-ARPES=”Angular Resolved Photoemission Spectro.”

-INS=”Inelastic Neutron Scattering experiments”

-Raman=”Two-magnon Raman scattering”Section IExact diagonalisations and Lanczos methodsComparison with other methods – p.33



Problems of
convergence ?

A priori, should worry about:

1. role of M , the # of Lanczos iterations ?

2. role of the imaginary part ε in z = ω + iε ?

3. role of system size ?

In fact, numerically EXACT results for a given sys-
tem size
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Convergence with
size

Ex.: single hole in a 2D antiferromagnet Local
density of state: N(ω) =

∑

k A(k, ω)

D.P. et al., PRB (1993)

|Ψ0

〉

= Heisenberg GS
A = ciσ: hole creation
Use of 2D "tilted" clus-
ters: N = n2 + m2

T1 = (n, m)
T2 = (−m, n)
|T1| = |T2| &
T1 · T2 = 0
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Other numerical methods:

CORE method – Density Matrix

Renormalisation Group (DMRG) –

Quantum Monte Carlo (QMC)
Comparison with Lanczos
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COntractor
REnormalisation

CORE method (Auerbach et al., Capponi et al.)

1. “Macrosites” (= rungs, plaquettes, etc...) → < de-
grees of freedom

2. construct effective H with longer-range & m-body in-
teractions
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DMRG (basics)
Numerical RG (Kondo problem):

K.G. Wilson, Rev. Mod. Phys 47, 773 (1975)
Density Matrix approach: S.R. White, PRL 69, 2863 (1992)

1. Start with block B and construct ”super-block”
B-site1-site2-B

2. Diag. super-block Hamiltonian ⇒ Ψ(i1, i2, i3, i4)

3. Calculate reduced density matrix,
ρ(i1, i2, i

′
1, i

′
2) =

∑

i3,i4
Ψ(i1, i2, i3, i4)Ψ(i′1, i

′
2, i3, i4)

keep m eigenvectors of maximum weights

4. Re-write all operators in new truncated basis;
B ⇒ B’=B-site ⇒ step 1.
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Results &
comparison with BA

Hubbard chain exactly solvable by Bethe-Ansatz
(U = 1, 2, 6, 10,∞).

Note: open boundary condition used !
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:  DMRG
:  exact

S. Ejima et al., Europhys. Lett., 70, 492 (2005)
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Quantum Monte
Carlo methods
(basics)

1. Metropolis algorithm

2. World-line algorithms

3. Continuous-time & SSE

4. Determinantal MC (fermions)
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Monte Carlo method
"Non-local updates for QMC simulations",
M. Troyer et al., p.156 in "The Monte Carlo

Method in the Physical Sciences", AIP Conf.
Proc., Vol. 690 (2003)

- Monte Carlo: iterative stochastic procedure in
configuration space

- Metropolis algorithm to sample probability
distrib. p(i):

P (i → j) = min[1, p(j)
p(i) ]

Metropolis, Rosenbluth, Rosenbluth, Teller & Teller (1953)
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Quantum Monte Carlo
Generalization of MC to Quantum systems

→ Trotter-Susuki formula:
M. Susuki, Prog. Theor. Phys. 56, 1454 (1976)

Z = Tr[exp (−
β

M
(H1 + H2))]

M

= Tr [exp (−
β

M
H1) exp (−

β

M
H2)]

M + O(1/M 2)

=
∑

〈

Ψ1|e
− β

M
H1|Ψ2

〉

...
〈

Ψ2M |e−
β
M

H2|Ψ1

〉

Quantum spins in d dimensions ⇒ classical
problem in d+1 dimensions
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World-line
representations

→ Evolution in imaginary time:
time step ∆τ = β/M

Example: quantum spin chain

=

+

H

H1

H2

a)

space direction

im
ag

in
ar

y 
tim

e

U2

U1

U2

U1

U2

U1

U2

U1

|i1〉
|i2〉
|i3〉
|i4〉
|i5〉
|i6〉
|i7〉
|i8〉
|i1〉b)
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Continuous-
time and SSE

Continuous time limit: ∆τ ⇒ 0, M ⇒ ∞

⇒ No systematic error! (Prokof’ev et al. (1996))

Stochastic Series Expansions (Sandvik (1991))
⇒ Taylor expansion of Z

Z = Tr exp (−βH) =
∑

n

βn

n!
Tr(−H)n

=
∑

n

βn

n!

∑
〈

Ψ1| − Hb1
|Ψ2 > ...

... < Ψn| − Hbn
|Ψ1 >
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World-line
representations (II)

Comparison between discrete, continuous time
and SSE QMC methods:

space direction
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How to simulate
fermions ?

Fermionic case - J.H. Hirsch, 1985
Hubbard-Stratonovich transformation

Idea: (i) use Trotter formula for
"decoupling" K (kin.) & V (int.)
(ii) decouple interaction term

(iii) integrate out fermionic variables

e−∆τUni,↑ni,↓ ∝
∑

s=±1 e−∆τsi,lλ(ni,↑−ni,↓)

Z =
∑

s=±1 detM+(s)detM−(s)
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Conclusions
Lanczos (ED)

T = 0 unbiased
computation

Static & dynamical

correlations

Access to quantum # &
symmetries

Versatile method:
frustration, long range
inter., 1D, 2D. etc...

Limited to small
clusters → Finite size
effects

Possible ext. ⇒
effective hamiltonians
(CORE)

QMC

Can reach Large
systems

Max Ent techniques
for dynamics

Finite T method
(mostly)

To beat "critical
slowing down" →
Loop algorithms

When frustration or
doping (n 6= 1/2) Mi-
nus sign problem

DMRG

Can reach Large
systems

T = 0 methods

New developments for
excited states and/or
time-dependent
quantities

Very accurate in 1D
(or quasi-1D) (frustra-
tion & doping possi-
ble) but problem when
→ 2D
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