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methods
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0ut|ine"

. Power method & Lanczos algorithm: how to
get started

. Finite size scaling: a simple example — 1D
chain of correlated fermions

. How to implement it on a computer
. Dynamical correlations

. Comparison with other methods
= DMRG method (basic notions)

m Stochastic methods (see R. Scalettar’s
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Some references

-Exact diag: "Simulations of pure and doped
low-dimensional spin-1/2 systems”,
, Chapter 5,

Quantum Magnetism, ,

Ed. U. Schollwock et al., Spinger (2004)

-DMRG: Review by IN “Lectures on The
Physics of Highly Correlated Electron Systems I1X”, AlP
Conf. Proceedings Vol.789 (2004).

Section IExact diagonalisations and Lanczos methodsComparison with other methods — p.



Some lattice models
to study

Hy=Hig + ZVijninj

ij
Hye — fe ol e
K = ij ¢1,5Cj,s

17J7S

Typically V;; restricted to on-site repulsion
(Hubbard U term) and nearest neighbor V
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Strong coupling
limits

m Heisenberg model (insulator at
half-filling)

Hy=Y J;Si-S;
1]
m Strong coupling: t-J
H,;, = H;+PHgP,
Hx = Y tydl o,

17J7S

P Gutzwiller projector: P = [[.(1 — nijini|)
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Finite size clusters

Q.
©eo 0o000000
Oeeeon e000000
000000 \@\\ ladder
C00000ee
[ XXX XN N
o600 e00000O0
’ L chain (1D)
e

two—dimensionnal (2D)

m Correlated lattice models
m Goals: = ground state properties
® = low energy excitations
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The simple power
method

H™ acts as a projector on the GS for n — o
‘(I)n> — (H — )\)n’q)() >

Then:
<<I>n\H]<I>n>/<<I>n\<I>n> — Fag
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The Lanczos

algorithm
Build a tri-diagonal matrix ~ Hieferences
m C. Lanczos, J. Res.
H|®y) = e|®y) + bo| D), Natl. Bur. Stand. 45,
255 (1950)

H|®,) = e,|®,) +byi1]|Pny) ™J.C.Bonnerand M.E.
+ by |y Fisher, Phys. Rev.
135, 640 (1964)

mJ. Oitmaa and D.D.
Betts, Can. J. Phys.
On+1) = H|Pp)—€n|Pr)—bn|Pr1) 56, 897 (1978)

Recurrent procedure:
en = (Pn|H|Pp)
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Use of symmetries

Goal: Block-diagonalize the H matrix

Joy = J(x-Y)
and
Vgp € Gp, J(gp(r)) = J(r).

G§=0GpQ®@7T
m Transl. group: 7 ={t,},p=1,....N
m Point group: Gp = (4, (square lat-

n
tl Ce) Section |IExact diagonalisations and Lanczos methodsComparison with other methods — p.!



A simple example:

the 2D t-J model

BB g

N=26 N=32
Ny /V'N x /N | Hilbert space for Sz = S%in | Symmetry group | Reduced HS
1 /4 x 4 102 960 Thg 6 435
1 /26 x /26 135 207 800 Toe 5 200 300
1/ V32 x /32 9 617 286 240 T32 @ Clyy 37 596 701~
4/\/%><\/% 10 546 208 400 Tos @ Cy ® I 50 717 244
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Use of "Block
theorem”

K = Zu n, K, ,
where K, reciprocal lattice vectors
_ 2
K,=5T,Ne,

Gi., little group of K (Gi; C Gp), containing
gp such that
gp(K) =K.

The relevant subgroup of G:
Ok =G T .
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Example: the
checkerboard lattice

(0,m) M=(Tt,Tr)
[ o

° ®
=(0,0) (7,0)

(a) (b)

N = 32 sites “checkerboard” cluster
mK =(0,0) or (m,m): Gk = Cyy ® T
mK = (0,7)or (m,0): Gg = Cy, ® Ti6
] K — (ﬂ- / 27 7 / 2) gK %on@ﬁia@sa@@LanczosmethodsComparisonwithothermethods—p.11



Change boundary
conditions

- translation vectors of the form
T,=(0,..,0,L,0,..,0)

- flux @ (in unit of the flux quantum) through one
hole of d-dimensional torus

— twist in the boundary conditions along
direction e,;:

D
txy CL,SC%S — Txy CL,SC%S exp (QZﬂ'L—(X —y)-e,)
L4



Finite size scaling:
Simple example: a one dimensional
system of correlated fermions
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1D correiatea
fermions: Hubbard
chain

1D systems: spin and charge collective modes
with velocities v, and u,

Density of state: N(w) ~ |w|®
o and K, non-universal exponents:

oz:i(Kp | [%p 2)

Practical formula: 7D = 2u, K,

— u, and D obtained on finite systems:

= "Drude weight": D = 32((%2/“ where ¢ = 27 2.

m Velocity u,: AE between k =0 and k = 27T/L
elgen States Section |Exact diagonalisations and Lanczos methodsComparison with other —p1




Finite silze in 1D

= conformal invariance implies: 22 = +
p aY

0%(Ey/L)
on?

= compressibility x ™ = 3
numerically
— check consistency of LL picture

computed

= finite size scaling of GS energy:

Eo(L T(UpTUs |
—L( ) = (6;2 e 1 O(1/L%)

m central charge c given by symmetry
spin velocity u, calculated independently.
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Results & _
comparison with BA

Spinless fermion chain (t-V model) exactly
solvable by Bethe-Ansatz (n = 1/2)

Note: periodic boundary conditions used

0.
Krho

0.004 0.006 0.008 ) 0.5 1
1/L \Y
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Partial summary

Advantages
B Non-perturbative method !! Versatile method !
m Comparisons to Extensions to many
experiments: mOde|S = eg mOde|S
® Fits — microscopic with phonons
parameters Limitations
= Structure factors m Small clusters !!
(ordering, eftc...) = Simple models
® Thermodynamics (with few degree
m Spectroscopies of freedom/ / site)

(ARPES, INS, o(w),...)
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A little practice:
How to implement the Lanczos method
on a computer ?

Section IExact diagonalisations and Lanczos methodsComparison with other methods — p.1!



The Hilbert space

PV states cexp N |

mHubbard — P =4;0, 1, |, 1/
m Heisenberg: — P =2;1, |
.t'J_>P:35 @5 Tal

Digital coding: |c) = |s1, ..., S, ..., Sn) = 1 integer
Heisenberg: N(|¢)) = S°1 27~ oy, with o; = 0, 1
t-d: N(le)) = 37 220,
with o; = 0="00", 1="01", 2="10"

N=4 states: | 1,0,7,]) = Ug4-.-090817160504031501
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The irreducible
representations

m.Symmetry sector: | = (K, 7k )
Tk irreducible representations (IR) of Gi;

m .“symmetric” state |a) = |a){|c) }:
ngeg{z,teT G(TK7 gp) CXp (ZK ' Tt) (gP t)(‘c>)7
where e(1k, gp) = characters of IR

m = keep only one state |r) = R(|c¢))
among related states (gpt)(|c))

m .Convenient choice: smallest integer
N(ley) i.e. N(|r)) = mingeg {N(g(|c)))}

m Set of all representatives A; = {|r)}
= Hilbert space reduced, by card(gx)

parison with other methods 2



O ~ W DD =

How to construct

.The simplest case: Hubbard-like models
c) = [e(1)) ® |e(]))
N(le)) = N'(le(1))) x 2% + N'(le(])))

Minimisation of N(g(|c))) over g € Gk:

. generate all T spins configs — |r(7)) kept,
. store &k ||r(T))] C Gk / |r(T)) invariant,

. construct full set of configs as |r(7)) ® |¢(])),
. apply all elts of Ek||r(T))] to | part,
. only retain |c(])) such:

Vg' € Exlr(1)] N'(|ebld))-<-Nilg! e -



Hamiltonian matrix

.Problem reduces to H|r,) x Zﬁm‘”( 1)%5 e, )

= fermionic commutation relations — (—1)%

® G0 ~ N — small "connectivity” in
configuration space — sparse matrix

How to calculate |ry 5)r = R{|c,5(1)) ®[cy,5(1))}7?
= apply all symmetries of Gk to |c, (1)) :

1. tabulate R : |¢(1)) — |7 (1))

2. store Rk |[(Je(1))]={g € Gk; g(|c(1)))=|r(1))}
= apply symmetries Rx||c, s(T))] 10 |c, 5(1))
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Worry about phase
factors !

Transf. "generated states = representatives”
iInvolves phases:

A8 = (_:—)Qv’ﬁe(TKng(gi,ﬁ)) exp (1K - T(gi,ﬁ))
95 5 € Rxl|cy,5(1))] defined by |1, ) = g7 5(lcy.5))

= store \, 5 (in integer form) + N{|r, )} —
64-bit integers

Exemple: Hilbert space of

/ ~ 128 symmetries — Reduced Hilbert space of
10® (100 millions) x ~ 40 images per state =4 Gw
l.e. 32 Gb. St Gogortstons an o metsconpa S



The link with experiments:
Dynamical correlations calculated
with Lanczos
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Computing Dynamics
Correlations - Outline

1. The continued-fraction method

2. Experimentally accessible fluctua-
tions

3. The convergence of the method
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Dynamical
correlations

Time-dependent correlations

C(t) = (Vo|A(t)AT(0)[ W)

Fourier transform =- frequency space: z = w + ie
C(z) = (Wo|A AT| )

Z—H—I—EO

{

Spectral function

1 N
[(w) = —=limImC(w + ie)

T €e—0
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hitial

Construct
state”

Al is applied to GS to construct a new
orthogonal state:

- 1
) AT

AT W)

1. matrix elements of A" calculated as for H

2. Al connects # symmetry sectors — construct
both Hilbert subspaces

= C(2) = (Wol AAT| W) (Dy] (2 — H) | y)

4 ohmea
W h e re ZSectic-n—I-Exao&iago alisatibn @dJ_anczos methodsComparison with other methods — p.2



second Lanczos
iterative procedure

Starting with |®,) as an initial state:

— matrix expressed in the new basis {|®,)} with
new choice |®,) = |®;).



Recurrence relations

Straightforwardly:

where D,, Is defined as D, = det A,
Apisthe (M —n+1) x (M —n+ 1) matrix:



"Practical” formula

Determinants D,, (for a given z) calculated
recursively:

Dy = (2 = &,)Dpi1 — b2, Dy
forl <n< M - 2.

Basic formula !! = spectral weight computed
from knowledge of tridiagonal matrix.

(Dar, Dyi—1) = Dyp—g — ... — Dy — Dy
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Some "'re-writing"”

Z—|—E0—él—

Fn — 66 —
2+ Fo 2 Z—I—Eo—ég—
- Physical meaning:
I(w) =3, (U] AT} [?6(w — B + Eo)

1. poles and weights — dynamics of Af

2. symmetry of AT — |¥,,,) € one IR of symmetry group
— well defined quantum number & selection rules

3. ! calculation of eigen-states/vectors not required !
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Physical Quantities

Correlations Notations Operators Experimer
Green function Ak, w) A=ck, ARPES
Structure factors |  Sq,w) A= 52 INS
Conductivity o(w) A=j, Optics
4-spin corr. R(w) > o RSk - Sk Raman

Dynamical correlations from experiment and theory
-ARPES="Angular Resolved Photoemission Specitro.”

-INS="Inelastic Neutron Scattering experiments”

= R a m a n — ”TWO - m ag n O n R a manExStQant;L@)rsin g'::,zos methodsComparison with other methods — p.3:



Problems of
convergence ?

A priori, should worry about:

1. role of M, the # of Lanczos iterations ?
2. role of the imaginary parte inz =w + 1€ ?

3. role of system size ?

In fact, numerically EXACT results for a given sys-
tem size



Convergence with
size

Ex.: single hole in a 2D antiferromagnet Local
density of state: Nw) = >, Ak w)
T LT W T [Wg) = Heisenberg GS

I Aol A=c:,: hole creation

h I
\\\\\\\\\\\\\

2l _J\MA "» - Use of 2D "tilted" clus-

A B | ters: N = n* +m?

SN T, = (n,m)
:JA . Ty = (—m,n)
e . T = |T:| &

T1-Ty=0
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Other numerical methods:
CORE method — Density Matrix
Renormalisation Group (DMRG) —

Quantum Monte Carlo (QMC)
Comparison with Lanczos



COntractor
REnormalisation

CORE method

1. “Macrosites” (= rungs, plaquettes, etc...) — < de-
grees of freedom

2. construct effective H with longer-range & m-body in-
teractions
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DMRG (basics)

Numerical RG (Kondo problem):
K.G. Wilson, Rev. Mod. Phys 47, 773 (1975)

Density Matrix _aﬁproach: S.R. White, PRL 69, 2863 (1992)
m 1. Start with block B and construct "super-block”

B-site-site,-B

m 2. Diag. super-block Hamiltonian = W (i, iy, i3, i4)

m 3. Calculate reduced density matrix,

/0(7;17 7:27 2,17 2/2) — Zig,m \Ij(ila Z.27 7:37 7’4)\:[](2,17 2/27 7:37 7’4)
keep m eigenvectors of maximum weights

m 4. Re-write all operators in new truncated basis;
B = B'=B-site = step 1.
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Results & _
comparison with BA

Hubbard chain exactly solvable by Bethe-Ansatz
(U =1,2,6,10, c0).

Note open boundary condition used !

.
- - [+ : DMRG
~~~~~~~~~ 0.9~ |[—: exact
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.7 ,
0.8]
MQ - I R = A B BT MO'
0 0.7-
0.6 |
”””””””””””””” D G G 0.6/
777777777777777777777777777 D Y 7
I GRS S5 s e e A
B O M 003 9% 02 04 06 08 I
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WUdAdILILtUIIl IVIVIILT
Carlo methods

1. Metropolis algorithm

2. World-line algorithms

3. Continuous-time & SSE

4. Determinantal MC (fermions)
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Monte Carlo method

"Non-local updates for QMC simulations”,
M. Troyer et al., p.156 in "The Monte Carlo
Method in the Physical Sciences”, AIP Cont.
Proc., Vol. 690 (2003)

- Monte Carlo: iterative stochastic procedure in
configuration space
- Metropolis algorithm to sample probability
distrib. p(7):
P(i — j) = min1, Z4]
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Quantum Monte Carlo

Generalization of MC to Quantum systems
— Trotter-Susuki formula:

7 = Tr[exp(—%(H1+H2))]M

Tr fexp (—Hy) exp (— H)) 4+ O(1/M?)
— 3 (e W) (g e Ty )

Quantum spins in d dimensions = classical
problem in d+1 dimensions

sComparison with other methods — p.4:



World-line
representations

— Evolution in imaginary time:
time step A7 = /M

Example: guantum spin chain

a) o) )
lig)
liz)
i
lis)
lig)
li3)
lip)
lip

time

imaginary

space direction
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Continuous-
time and SSE

m Continuous time limit: A7 = 0, M = oo
= No systematic error! (

B Stochastic Series Expansions (
= Taylor expansion of Z



World-line
representations (ll)

Comparison between discrete, continuous time
and SSE QMC methods:

) p §
A A A
: £ £
> §=
3 o)
g &
<
£ E g
0 0 — 1 e
pace d space dir pace d
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How to simulate
fermions ?

Fermionic case -
Hubbard-Stratonovich transformation

Idea: (i) use Trotter formula for
"decoupling" K (kin.) & V' (int.)
(il) decouple interaction term
(i) integrate out fermionic variables

—ATUn; 11, —ATs; (A 1Ny )
e szLOCZS:ﬂe i, 1AM, 1=, |

Z=> . _, detM™(s)detM~(s)
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Conclusions

Lanczos (ED)

B 7 = 0 unbiased
computation

B Static & dynamical
correlations

B Access to quantum # &
symmetries

B Versatile method:
frustration, long range
inter., 1D, 2D. eftc...

B Limited to small
clusters — Finite size
effects

B Possible ext. =
effective hamiltonians
(CORE)

QMC

B Can reach Large
systems

B Max Ent techniques
for dynamics

B Finite T method
(mostly)

B To beat "critical
slowing down" —
Loop algorithms

B When frustration or
doping (n # 1/2) Mi-
nus sign problem

DMRG

B Can reach Large
systems

B 7 — 0 methods

B New developments for
excited states and/or
time-dependent
quantities

M Very accurate in 1D
(or quasi-1D) (frustra-
tion & doping possi-
ble) but problem when
— 2D
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