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Chapter 1

Introduction

More than fifty years after its proposal, the Mott transition remains an issue of current and
broad interest, continually revived by the discovery of strongly correlated materials which display
anomalous phenomena in the vicinity of a Mott insulating phase, high Tc superconductivity in
cuprates being just the most spectacular example.

The Mott transition in known to escape any simple single-particle-like description, including
the Hartree-Fock and the DFT-LDA theories. Indeed these theories are only able to deal with
band-insulators characterized by an energy gap separating totally filled from unfilled bands.
Therefore they can describe a Mott insulator only if a symmetry breaking order parameter
is assumed, which turns effectively a Mott- into a conventional band-insulator. The typical
example is the single-band Hubbard model at half-filling. This model should always have an
insulating phase at sufficiently large repulsion. Yet, in order to make this phase accessible for
instance to Hartree-Fock theory, one is obliged to assume an antiferromagnetic order parameter
that doubles the unit cell so to fulfil the necessary requirement for a band-insulator to have an
even number of electrons per unit cell. In this way, the Mott phenomenon, which solely involves
freezing of charge fluctuations, is completely masked by magnetism. Since also conventional
perturbation theory is inadequate, being the Mott transition inherently non-perturbative, ad
hoc schemes have been developed during the years, starting from Hubbard himself. Among
them, Dynamical Mean Field Theory (DMFT) and numerical quantum-simulations have been
the most successful in uncovering the basic features of the Mott transition disentangled from
un-necessary complications as magnetism.

However, once we accept the idea that the Mott phenomenon is well distinguishable from
the on-set of symmetry breaking that usually arises in the insulating phase, then even the latter
becomes far less trivial, as we are going to discuss.
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Figure 1.1: Qualitative behavior of the entropy of a Mott insulator.

1.1 The Mott transition

As we know the interaction-driven Mott metal-to-insulator transition emerges out of the com-
petition between the tendency of the electrons to delocalize throughout the crystal so to maxi-
mize the band-energy gain and the Coulomb repulsion among the same electrons which, on the
contrary, tends to suppress valence fluctuations by localizing the carriers. If the band-energy
gain, which can be identified with the “bare” bandwidth W is small enough with respect to
the short-range Coulomb repulsion, commonly parametrized by an on-site Hubbard U , and the
electron-density is commensurate with the lattice, charges get localized and the system is a Mott
insulator. On the contrary, if the bandwidth is larger than a critical value or if the electron-
density is incommensurate, the pure system without disorder has to remain a metal, although a
strongly-correlated one. Let us discuss on very general grounds the behavior of the entropy in
both cases..

1.1.1 The Mott insulator

In Fig. 1.1 we sketch very roughly the expected behavior of the entropy well inside a Mott insu-
lating phase, U � W . At high temperature T ∼ U , the entropy related to valence fluctuations
is suppressed and the system enters a regime with approximately constant entropy that could
be defined as the ideal Mott insulator. Here only charge degrees of freedom are locked while
all other degrees of freedom, like the spins and eventually the orbitals, are still completely free.
However, at some lower temperature, other energy scales come into play, whose role is to lock
these additional degrees of freedom so to rid the Mott insulator of their entropy. These energy
scales include for instance the on-site Coulomb exchange, responsible of the Hund’s rules, the
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inter-site direct- or super-exchange, the crystal field, the coupling to the lattice and so on and
so for. We will denote these energy scales collectively as J , which has to be identified as the
temperature at which the entropy of the residual degrees of freedom of the ideal Mott insulator
starts to be suppressed. Consequently, at low temperature, a realistic insulating phase is estab-
lished, which is usually accompanied by a symmetry breaking phase transition at T = Tc ≤ J ,
for instance a magnetic ordering. Below Tc, the entropy decreases to zero as T → 0 either ex-
ponentially or with a power law with an exponent generically greater than one, if a continuous
symmetry is broken and gapless Goldstone modes exist.

Recently a lot of research activity has focused on the possibility that different symmetry
broken phases may compete in the insulator, leading to exotic low temperature phenomena.
Here we will discard completely this event and concentrate on a different competition which
emerge in the metallic phase adjacent the Mott insulator.

1.1.2 The strongly-correlated metal
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Figure 1.2: Qualitative behavior of the entropy of a strongly-correlated metal.

Let us move now on the metallic side of the Mott transition, where the band-energy gain W
is slightly larger than its critical value Wc � U or the density is not commensurate. In Fig. 1.2
we draw what would roughly be the entropy behavior of the strongly-correlated Fermi-liquid-like
metal in the absence of any symmetry breaking. As before we expect that the charge-fluctuation
entropy is, this time only partially, reduced at some high temperature of order W � U . The
rest of the charge-fluctuation entropy as well as the entropy of the other degrees of freedom are
insted suppressed by the formation of the degenerate quasi-particle gas. This occurs below a
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temperature T ∗
F , that can be identified as the effective quasi-particle Fermi temperature. Since

quasiparticles carry the same quantum numbers of the electrons, the entropy quenching involves
all degrees of freedom at the same time, including the charge. Below T ∗

F the entropy should
therefore vanish linearly, S(T ) � γ∗ T , with a specific heat coefficient γ∗ generically larger than
its non-interacting value γ ∼ 1/W .

Let us suppose that the Mott metal-to-insulator transition (MIT) is continuous and try to
argue how it can happen. Obviously, since quasi-particles disappear at the transition, we should
expect that T ∗

F → 0 at the MIT. Therefore at some value of W ≥ Wc, the quasi-particle Fermi
temperature T ∗

F should become smaller than J . Therefore, by continuity with the insulating
side, we should expect that part of the spin and eventually orbital entropy is already suppressed
at temperatures of order J before the on-set of degeneracy. This would imply some kind of
pseudo-gap opening above T ∗

F , which is a bit at odds with the conventional Landau-Fermi-
liquid theory. One way out, apart from a first-order MIT, is that something new happens when
T ∗

F � J . Indeed the presence of J provides the metallic phase with an alternative mechanism
to freeze spin and, eventually, orbital degrees of freedom independently of the charge ones,
which becomes competitive with the on-set of a degenerate quasiparticle gas when T ∗

F � J .
This competition more likely leads to an instability of the Landau-Fermi-liquid towards a low-
temperature symmetry-broken phase, like in the insulating side, but it may also signal a real
break-down of Fermi-liquid theory.

Notice that, unlike the competition between different symmetry broken Mott-insulating
phases, which requires fine tuning of the Hamiltonian parameters that may only accidentally
occur in real materials, this new type of competition should be accessible whenever it is pos-
sible to move gradually from a Mott insulator into a metallic phase, for instance by doping or
applying pressure. We also know several examples where this competition is argued to be the
origin of very appealing phenomena. For instance in heavy fermion materials the Kondo effect,
favoring the formation of a coherent band of heavy quasiparticles, competes with the RKKY
interaction. Here this competition is supposedly the key to understand the anomalies which
appear at the transition between the heavy fermion paramagnet and the magnetically ordered
phase. Another popular example are just the cuprates, where the role of J is presumably played
by the super-exchange and is believed by many people to be the origin of superconductivity.

Since this competition occurs nearby the Mott transition, it is very difficult to investigate
with conventional many-body techniques. Fortunately a lot of insights can still be gained by
resorting to Dynamical Mean Field Theory.
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Chapter 2

Brief introduction to Dynamical
Mean Field Theory

In these lectures we discuss some general aspects of Dynamical Mean Field Theory which are
needed for what will follow. This theory was formulated by Georges and Kotliar in 1992 starting
from some previous observations by Metzner and Vollhardt about the properties of lattice models
of interacting electrons in the limit of infinite coordination lattices.

2.1 Properties of tight-binding models in infinite coordination

lattices

Since we do not pretend to give here a complete overview, let us discuss for simplicity the
case of electrons hopping to nearest neighbor sites in a Bethe Lattice, which is the limit of
infinite connectivity z → ∞ of a Cayley tree, shown for instance with z = 3 in Fig. 2.1. The
results, apart from some details, are generic to any infinite coordination lattices. Let us start by
calculating the density of states (DOS) of a Cayley tree with nearest neighbor hopping −t/√z
in the limit z → ∞ (the normalization of the hopping is needed to obtain a meaningful result,
as shown below). The on-site Green’s function of a given site, denoted as site 0, satisfies the
Dyson equation with complex frequency ζ

G−1
00 (ζ) = ζ − t2

z

∑
i,0

G
(0)
ii (ζ),

where the sum is over the z nearest neighbors of 0, and G(0)
ii (ζ) denotes the local Green’s function

at site i with site 0 removed. In the limit z → ∞, G(0)
ii should become equal to the true local

Green’s function G = G00, leading to the self-consistency equation

G−1(ζ) = ζ − t2G(ζ).
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Figure 2.1: The Cayley tree for connectivity z = 3

Indeed the Dyson equation has a well defined limit for z → ∞ thanks to the proper normalization
of the hopping. The solution is

G(ζ) =
1

2 t2
(
ζ −

√
ζ2 − 4t2

)
, (2.1)

with the convention that
lim

|ζ|→∞

√
ζ2 − 4t2 = ζ.

The DOS is obtained through

D(ε) = − 1
π

mG(ζ → ε+ i0+) =

√
4t2 − ε2

2πt2
. (2.2)

The advantage of using the Bethe lattice is that its DOS is non-zero only on a finite energy-
range, hence it is a sensible representation of the DOS of a generic tight-binding model in
finite-dimensional lattices (apart from accidental model-dependent features as Van Hove singu-
larities). For instance the DOS of a hypercubic lattice with nearest neighbor hopping −t/√2d
(the coordination number z = 2d) in the limit of infinite dimensions d→ ∞ is a gaussian

D(ε) =
1√
2πt2

e−ε2/2t2 ,
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which is non-zero for any value of the energy.
Two sites, i and j, are connected in the Cayley tree by just a single path, whose length is

denoted as R(i, j). In other words, an electron at i has to hop R(i, j) times to reach j, each
hopping bringing with itself a factor 1/

√
z. As a result the Green’s function Gij scales with z as

Gij ∼
(√

1
z

)R(i,j)

. (2.3)

Since this scaling behavior with the coordination number is just consequence of the normalization
of the hopping amplitude, it is generic to any d-dimensional lattices when d→ ∞. Moreover we
do not expect that this behavior does change if a short-range interaction is included.

i j

k

l
i j

Figure 2.2: Example of two self-energy diagrams which collapse to a single site

Let us analyse the consequences of (2.3) within the skeleton perturbation expansion of the
single-particle self-energy Σij(iεn). In Fig. 2.2 we draw the second- and the fourth-order skeleton
diagrams of the self-energy Σij. Each dot corresponds to the on-site interaction vertex and is
labelled by the site-index, while the lines are the fully-interacting Green’s functions. In the
second order diagram, site i and j are connected by three lines, which means through (2.3) a
factor z−3R(i,j)/2. If we were to do a Fourier transform, we should take fixed for instance i and
sum over all j’s. Since the number of sites j which have the same distance R(i, j) = R from i
scales as zR, we get to the conclusion that only the term with R = 0, namely i = j, survives.
Let us consider now the fourth-order diagram. Again we can realize that each pair of sites can
be joined at least by three independent paths. As a result the only non-zero contribution for
z → ∞ arises again when i = j = k = l. The same conclusion can be shown to hold at any
order in perturbation theory. The consequence is that the self-energy in the skeleton expansion
is only functional of the local Green’s function, hence it is itself local, namely

Σij(iεn) = δij Σ(iεn), (2.4)
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hence its Fourier transform is momentum independent,

Σ(k, iεn) = Σ(iεn). (2.5)

As a by-product, let us consider the irreducible vertex Γ0
ij;kl in some scattering channel. We

know that, considering the self-energy as functional of the fully-interacting Green’s function, the
following relation holds:

Γ0
il;kj =

δΣij[G]
δGkl

.

Since we just demonstrated that the self-energy is local and functional only of the local Green’s
function, it derives that all irreducible vertices are local too, i.e.

Γ0
il;kj = Γ0 δij δik δil. (2.6)

We conclude by some definitions. Since the self-energy is only frequency dependent, the local
Green’s function is the Hilbert transform

G(iεn) = D̃(ζ) ≡
∫
dεD(ε)

1
ζ − ε

, (2.7)

where ζ = iεn + μ − Σ(iεn), μ being the chemical potential. In other words ζ is the inverse
Hilbert transform of G, namely

ζ = R
(
D̃(ζ)

)
= R(G). (2.8)

In the case of the Bethe lattice, one can easily show that

D̃(ζ) =
1

2t2
(
ζ −

√
ζ2 − 4t2

)
, (2.9)

with the same convention as before

lim
|ζ|→∞

√
ζ2 − 4t2 = ζ.

Inverting this formula leads to

ζ = iεn + μ− Σ(iεn) = R(G) = t2G+
1
G
. (2.10)

2.2 Reduction to a single site problem

Let us now consider the interacting Hamiltonian on the Cayley tree

H
[
c†, c

]
= − t√

z

∑
<ij>,a

c†iacja +H.c. +
∑

i

Hint

[
c†i , ci

]
,
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where c†ia and cia are creation and annihilation operators at site i, a is a multilabel for spin and
eventually orbitals, and Hint is an on-site interaction term. Within the path-integral formalism
the imaginary-time action is

S =
∫ β

0
dτ
∑
i,a

c̄ia(τ) (∂τ − μ) cia(τ) + H [c̄(τ), c(τ)] ,

where c̄(τ) and c(τ) are Grassmann variables at imaginary time τ . Let us focus on a particular
site, for instance site 0, and write

S = S0 + S0−bath + Sbath,

where

S0 =
∫ β

0
dτ
∑

a

c̄0a(τ) (∂τ − μ) c0a(τ) + Hint [c̄0(τ), c0(τ)] ,

is the action of the isolated site 0,

S0−bath = − t√
z

∑
<i0>,a

∫ β

0
dτ c̄ia(τ)c0a(τ) + c̄0a(τ)cia(τ),

is the coupling bewteen site 0 and the other sites, described by the action Sbath. The effective
action for site 0 can be obtained by integrating over all the other sites within a perturbative
expansion in S0−bath. By means of the linked-cluster theorem one finds that

Seff
0 = S0 + ΔS0,

where (we drop for simplicity the multilabel a)

ΔS0 =
∞∑

n=1

ΔS(n)
0 =

∞∑
n=1

(
t√
z

)2n n.n.′s of 0∑
i1,...,in,i′1,...,i′n

∫ β

0

n∏
j=1

dτj dτ
′
j

c̄0(τ1) c̄0(τ2) . . . c̄0(τn) c0(τ ′n) . . . c0(τ ′2) c0(τ
′
1)

G
(0)
i1,...,in,i′n,...,i′1

(τ1, τ2, . . . , τn, τ ′n, τ
′
n−1, . . . , τ

′
1), (2.11)

being G(0)
i1,...,in,i′n,...,i′1

(τ1, τ2, . . . , τn, τ ′n, τ ′n−1, . . . , τ
′
1) the n-particle connected Green’s function of

the fully interacting model with site 0 removed. Notice that, in the Cayley tree, once site 0 has
been removed there is no path connecting two different nearest neighbor sites of 0. Therefore
the only non-zero fully-connected n-particle Green’s functions appearing in (2.11) are those with
i1 = i2 = · · · = in = i′n = · · · = i′1. As a result, the summation reduces only to the sum over
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the z nearest neighbors. Since the n-th order term is proportional to z−n, the only one which
survives for z → ∞ has n = 1, namely

ΔS0 = ΔS(1)
0 =

t2

z

∑
i n.n.′s of 0

∫ β

0
dτ dτ ′ c̄0(τ)G

(0)
ii (τ, τ ′) c0(τ ′).

In the limit z → ∞ the local Green’s function with site 0 removed should not differ from the
local Green’s function G with site 0 present, which is obviously site-independent. Hence

ΔS0 → t2
∫ β

0
dτ dτ ′ c̄0(τ)G(τ, τ ′) c0(τ ′),

and

Seff
0 =

∫ β

0
dτ
∑

a

c̄0a(τ) (∂τ − μ) c0a(τ) + Hint [c̄0(τ), c0(τ)]

+t2
∫ β

0
dτ dτ ′ c̄0(τ)G(τ, τ ′)c0(τ ′). (2.12)

This action describes a single site with a non-interacting single-particle Green’s function

G−1
0 (iεn) = iεn + μ− t2G(iεn), (2.13)

in the presence of an instantaneous interaction Hint. G0 plays actually the same role played
by the Weiss field in classical Mean-Field Theory. Let us suppose we were able to solve this
single-site problem and find the fully-interacting single-particle Green’s function

G−1(iεn) = G−1
0 (iεn) − Σ(iεn), (2.14)

where Σ is the self-energy of the single-site problem. Since site 0 is equivalent to any other site,
it immediately follows that

G(iεn) ≡ G(iεn), (2.15)

namely that
G−1(iεn) ≡ iεn + μ− t2G(iεn) − Σ(iεn). (2.16)

Comparing (2.16) with (2.10) we discover that the self-energy of the single-site problem coincides
with the momentum independent self-energy of the lattice model. The same equivalence holds for
any infinite-coordination-lattice model, where the single-site non-interacting Green’s function,
also called the Weiss field, takes the general form

G−1
0 (iεn) = iεn + μ+G(iεn)−1 −R (G(iεn)) , (2.17)

being R(G) the inverse Hilbert transform with the appropriate DOS. Eq. (2.17) reduces to (2.13)
in the Bethe lattice.
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2.3 Mapping onto an impurity model

We have shown that for infinite coordination lattices one can determine the single-particle self-
energy, which is purely local, by solving an auxiliary single-site problem with action (2.12). The
self-energy of this problem is identical to the lattice self-energy. In order to gain some physical
insights, let us try to reformulate the Lagrangian problem (2.12) into an Hamiltonian one.

Let us consider the following Anderson impurity model:

HAIM = Hbath + Himp + Himp−bath, (2.18)

where
Hbath =

∑
ε a

ε c†εacεa, (2.19)

describes a non-iteracting bath,

Himp = −μ
∑

a

d†ada + Hint

[
d†, d

]
, (2.20)

is the Hamiltonian of the isolated impurity, and

Himp−bath =
∑
ε a

Vε d
†
acεa +H.c., (2.21)

is the hybridization of the impurity with the bath. Within the path-integral formalism, upon
integrating out the conduction electrons we would arrive to an action for the impurity of the
same form as (2.12) with the non-interacting Green’s function given by

G−1
0 (iεn) = iεn + μ− Δ(iε), (2.22)

where Δ(iε) is the so-called hybridization function, as discussed later,

Δ(iε) =
∑

ε

|Vε|2
iεn − ε

.

Therefore, if we impose that the hybridization function is related to the fully-interacting impurity
Green’s function by the self-consistency requirement

Δ(iε) =
∑

ε

|Vε|2
iεn − ε

= t2 G(iεn), (2.23)

then the solution of the impurity model coincides with the solution of the lattice model.
A big advantage of the mapping onto an Anderson impurity model is that the latter is very

well known and can provide a useful guidance to interpret the behavior of the lattice model.
Therefore it is convenient to begin our analysis from the Anderson impurity model per se,
before discussing the behavior of a strongly correlated lattice models as emerges out of DMFT.
However, before we start presenting the physics of the Anderson impurity model, it is convenient
to briefly overview the extension of DMFT from the single-site to a cluster.
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2.4 Cluster extensions of DMFT

We have shown that, in the limit of infinite-coordination lattices, a lattice model of electrons
interacting with an on-site potential can be mapped onto a single Anderson impurity model
subject to a self-consistency requirement. Although in finite coordination lattices the mapping
is nomore exact, one can still use DMFT as a mere approximation. Indeed, if one is convinced
that what really matters close to a Mott transition is the frequency dependence of the self-energy
and not its momentum dependence, then one can assume Σ(k, iεn) � Σ(iεn) and search for an
Anderson impurity model built so to have the same self-energy as the local-one in the lattice
model. If one builds up this procedure in a consistent way, the resulting self-consistency require-
ment is just Eq. (2.17). However, we already mentioned that an interesting piece of physics may
emerge in the metallic phase when the quasi-particle Fermi temperature, T ∗

F , becomes of the
same order as the processes, J , that rid the ideal Mott insulator of its residual entropy. Since
in many relevant models these processes are inter-site, like the super-exchange in the Hubbard
model, this physics is lost in the single-site DMFT approximation.

There have been recently several attempts to extend DMFT approximation to include par-
tially spatial correlations. The idea underneath is the same for all these extensions. Essentially,
instead of focusing on a single site, within cluster-DMFT one considers a cluster of sites and solve
an auxiliary model of a cluster of Anderson impurities embedded into a bath, with an hybridiza-
tion function to be determined self-consistently. However, since there is no obvious limiting case
in which a cluster extension of DMFT becomes exact, as it was the infinite-coordination limit in
the single-site formulation, the self-consistency requirement is not uniquely defined and differs
from one version of cluster-DMFT to another.

It is not our purpose to discuss in detail all these extensions. We only want to point out
that, as the single impurity per se can be used as a guideline to interpret the single-site DMFT
results, analogously the knowledge of the general properties of clusters of Anderson impurities
may turn useful in connection with cluster-DMFT. In particular we will show that the above
mentioned competition T ∗

F versus J , that we aim to explore, has a very simple and inspiring
analogy in impurity-clusters.
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Chapter 3

The Kondo effect and the physics of
the Anderson impurity model

The Anderson impurity model was originally introduced in the 60’s to explain the behavior of
magnetic impurities (Fe, Mn, Cr) diluted into non magnetic metals.

We know that the thermodynamics and transport properties of good metals with a large
Fermi temperature, TF ∼ 104 K, are dominated at low temperatures, T � TF , by the Pauli
principle. For instance, magnetic susceptibility is roughly constant, χ ∼ 1/TF , and one should
in principle heat the sample to very high temperatures T � TF to release the spin entropy and
recover a Curie-Weiss behavior χ ∼ 1/T . Moreover, the resistivity is an increasing function of
temperature, since the channels which may dissipate current, the coupling to the lattice as well
as to multi particle-hole excitations, become available only upon heating.

At odds with this expectation, if a very diluted (even few part per million) concentration
of magnetic impurities is introduced, the above behavior changes drastically. We just mention
three distinct features.

(1) The magnetic susceptibility shows a Curie-Weiss behavior well below TF , proportional to
the impurity concentration ni and roughly with the same g-factor of the isolated magnetic
impurity, apart from corrections due to the crystal field. Around a very low temperature,
called Kondo-temperature, TK , the Curie-Weiss behavior turns into a logarithmic one and
finally the susceptibility saturates at low temperature to a value χ(0) ∼ ni/TK , with
χ(T ) − χ(0) ∼ −T 2.

(2) The resistivity R(T ) displays a minimum around TK , followed at T < TK by a logarithmic
increase. At very low temperatures, R(T ) approaches a constant value R(0) ∝ ni with
R(T ) − R(0) ∼ −T 2. The value of the residual resistivity R(0) suggests very strong
scattering potential, near the so-called unitary limit.

(3) The entropy released above the Kondo temperature, which can be obtained by measuring
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the specific heat, includes only spin and eventually orbital degrees of freedom of the iso-
lated impurity but not the charge degrees of freedom. This indicates that the magnetic
impurities behave as local moments above TK .

Explaining this behavior amounts actually to understand (1) how it is possible to sustain a
local moment in a metal; and (2) why and how, once the local moment is formed, it disappears
at low temperatures.

The earlier attempts, mainly due to Friedel, to tackle these questions using the conventional
scattering theory of metals partially failed. As we will discuss in Appendix A, the only possible
way to explain within scattering theory a Pauli-like behavior χ ∼ 1/TK which turns into a Curie-
Weiss one at TK � T � TF is by the existence of a narrow resonance, of width TK , pinned
nearby the chemical potential, still on a scale TK . This explanation is however not satisfying
mainly for two reasons. First of all it does not justify why this resonance should always be pinned
at the chemical potential for many different host metals and magnetic impurities. Moreover it
contradicts the measured entropy-release above TK . In fact, for temperatures bigger then its
width, the full entropy of a resonant state should be recovered, which includes charge degrees
of freedom, too.

3.1 The Anderson Impurity Model

Something which is obviously missing in the scattering-theory analysis are local electron-electron
correlations around the magnetic ions. A narrow resonance induced by an impurity would be
quite localized around the same impurity, being essentially an atomic level broadened by the
hybridization with the conduction electrons of the host metal. Therefore, like an atomic level,
such a resonance is likely to accomodate only a fixed number of electrons, say N , paying a
finite amount of energy for adding or removing electrons. As usual, it is convenient to define a
so-called Hubbard repulsion U through

U = E(N + 1) + E(N − 1) − 2E(N), (3.1)

where E(M) is the total energy when the resonance is forced to have M electrons, N being the
equilibrium value. In principle one might include this additional ingredient by adding to the
Hamiltonian a term

U

2
(n̂−N)2 , (3.2)

with n̂ the occupation number operator of the resonance level. If it were possible to define such
an operator, then (3.2) would actually solve one of the puzzles. Indeed, if U � TK and for
temperatures TK � T � U , valence fluctuations with respect to the equilibrium value N would
be suppressed, and the only degrees of freedom contributing to the entropy would be those
related to the degeneracy of the N -electron configurations at the resonance. Namely, if the
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resonance is 2(2L+1)-fold degenerate, 2 from spin and (2L+1) from the orbital, the degeneracy
of the N -electron state is the binomial

C
2(2L+1)
N =

(
2(2L+ 1)

N

)
=

(4L+ 2)!
N ! (4L+ 2 −N)!

,

with entropy S = lnC2(2L+1)
N . In other words the resonance would actually behave like a lo-

cal moment. Unfortunately the resonance occupation number operator is an ill defined object.
To overcome this difficulty, Anderson had the idea to represent the resonance as an additional
electronic-level inside the conduction band, even if this would be, rigorously speaking, an over-
complete basis. This leads to the so-called Anderson Impurity Model (AIM) defined in the
simplest case of a single-orbital impurity L = 0 as

HAIM =
∑
kσ

εk c
†
kσckσ +

∑
kσ

Vk c
†
kσdσ +H.c.

+
U

2
(n̂d − 1)2 + εd n̂d. (3.3)

This model describes a band of conduction electrons with energy dispersion εk, hybridized with
a single level, dσ, with energy εd, both εk and εd being measured with respect to the chemical
potential, and n̂d =

∑
σ d

†
σdσ. This level suffers from an interaction U which tends to lock no

more no less than a single electron.

Let us start from the non-interacting model, U = 0, to show that it indeed describes a
resonance. Before switching the hybridization Vk, the conduction electron Green’s function in
complex frequency z is

G
(0)
k (z) =

1
z − εk

= (3.4)

and is represented as a dashed tiny line, while the impurity one is

G(0)(z) =
1

z − εd
= (3.5)

and is represented as a solid tiny line. The corresponding Green’s functions in the presence of
Vk,

Gkp(z) =

G(z) = ,

are represented as bold lines. Notice that the conduction electron Green’s function is nomore
diagonal in momentum. In addition one has to introduce the mixed Green’s functions

Gkd(τ) = −〈T
(
ckσ(τ) d†σ

)
〉 =
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Figure 3.1: Dyson equations for the Green’s functions. Bold (red) lines are the Green’s functions
in the presence of hybridization, represented as a circle, while tiny (black) lines are unperturbed
Green’s functions.

Gdk(τ) = −〈T
(
dσ(τ) c†kσ(τ)

)
〉 =

Through the Dyson equation shown diagramatically in Fig. 3.1, we find that

G(z) =
1

z − εd − Δ(z)
, (3.6)

where the so-called hybridization function is defined through

Δ(z) =
∑
k

|Vk|2
z − εk

. (3.7)

The conduction electron Green’s function is instead

Gkp(z) = δkpG
(0)
k (z) +G

(0)
k (z)Tkp(z)G(0)

p (z), (3.8)

where the T -matrix, see Appendix A, is

Tkp(z) = Vk

1
z − εd − Δ(z)

V ∗
p . (3.9)

In addition

Gkd(z) =
Vk

z − εk

1
z − εd − Δ(z)

, (3.10)
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Gdk(z) =
V ∗
k

z − εk

1
z − εd − Δ(z)

. (3.11)

We notice that the hybridization function has a branch cut on the real axis since


mΔ(z → ε± i0+) = ∓π
∑
k

|Vk|2 δ (ε− εk) ≡ ∓Γ(ε). (3.12)

In terms of Γ(ε) > 0 we can write

Δ(z) =
∫
dε

π

Γ(ε)
z − ε

.

Since we are interested in temperatures/frequencies much smaller than the conduction electron
Fermi energy, we will assume for simplicity that Γ(ε) = Γ for |ε| < W and Γ(ε) = 0 otherwise,
with W of order TF . Then, if |z| �W one readily finds that

Δ(z) = −iΓ sgn Imz. (3.13)

In this approximation the impurity DOS is

ρ
(0)
d (ε) = − 1

π
ImG(ε+ i0+) =

1
π

Γ
(ε− εd)2 + Γ2

, (3.14)

which is just a resonant state trapping a number of electrons of given spin that is

Nd =
∫ +∞

−∞
dε f(ε) ρ(0)

d (ε). (3.15)

According to the scattering theory analysis of Appendix A, this resonance corresponds to a
scattering phase shift π/2 at the chemical potential.

3.1.1 Perturbation theory

Let us consider the case εd = 0 and switch on the Hubbard repulsion

U

2
(n̂d − 1)2 =

U

2
+ U n̂d↑ n̂d↓ − U

2
n̂d,

to be treated in perturbation theory. To be consistent the perturbation expansion is carried out
both in the interaction term as well as in the last term on the right-hand side.

First of all notice that, since the conduction electrons are non-iteracting, their Green’s func-
tion is still of the form

Gkp(z) = δkpG
(0)
k (z) +G

(0)
k (z)Tkp(z)G(0)

p (z), (3.16)
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where the interacting T -matrix is

Tkp(z) = Vk G(z)V ∗
p . (3.17)

with G(z) the fully-interacting impurity Green’s function. It is convenient, for what we are going
to show in the following, to introduce the combination of conduction electrons that is actually
coupled to the impurity, hence the only one which scatters off the impurity. This is simply

c0σ =
1
V

∑
k

V ∗
k ckσ, (3.18)

where
V 2 =

∑
k

|Vk|2,

so that the hybridization becomes

V
∑
σ

(
c†0σ dσ +H.c.

)
(3.19)

The Green’s function of c0σ in the absence of the impurity is given by

G
(0)
0 (z) =

1
V 2

∑
k

|Vk|2
z − εk

=
1
V 2

Δ(z), (3.20)

and implies a DOS,

ρ0(ε) =
1

πV 2
Γ(ε) → 1

πV 2
Γ. (3.21)

the last equality being valid within the approximation leading to (3.13). On the contrary, in
the presence of the impurity, the above Green’s function transforms, through Eqs. (3.17) and
(3.16), into

G0(z) =
1
V 2

∑
kp

V ∗
k Vp Gkp(z)

= G
(0)
0 (z) +G

(0)
0 (z)T (z)G(0)

0 (z), (3.22)

with a T -matrix
T (z) = V 2 G(z). (3.23)

It then follows that the phase-shift in the c0-scattering-channel, see Appendix A, can be defined
as

δ(ε) = 
m lnG (z = ε+ i0+
)
. (3.24)
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Moreover, the S-matrix at the chemical potential is readily found to be

S(0) = 1 − 2
ρd(0)

ρ
(0)
d (0)

, (3.25)

where ρ(0)
d (0) is the non-interacting impurity DOS at the chemical potential, see Eq. (3.14), and

ρd(ε) = − 1
π

mG(z = ε+ i0+),

the interacting DOS. Notice that, in the absence of interaction, S(0) = −1 which once more
implies a π/2-phase shift.

Since everything depends on the impurity Green’s function, let us calculate up to second
order the self-energy. The first and second order corrections are drawn in Fig. 3.2. One can
easily show that the first order correction vanishes, namely the resonance stays pinned at the
chemical potential. The calculation of the second order correction is more involved. One can

=
(2)

 σ

− σ

Σ
(1)

= − U/2 = 0

Σ

Figure 3.2: First and second order self-energy corrections.

show that, for real frequencies z → ε+ i0+, �eΣ(2)(ε) ∼ −ε
(
U ρ

(0)
d (0)

)2
, namely it vanishes at

ε = 0. This result remains true at any order in perturbation theory, and it is a consequence of
the particle-hole symmetry that we have implicitly assumed using (3.13) and fixing εd = 0. The
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imaginary part


mΣ(2)(ε) ∼ −U2
(
ρ

(0)
d (0)

)3
ε2.

This result is equivalent to the well known behavior of the quasiparticle decay rate and derives
from simple phase-space arguments. Indeed one can easily show that, at any order in pertur-
bation theory, the imaginary part of the self-energy decays at least as ε2. As a result, provided
perturbation theory remains valid for any value of U , it should follow that

ρd(0) = − 1
π

lim
ε→0


m 1
ε+ iΓ − Σ(ε)

=
1
πΓ

= ρ
(0)
d . (3.26)

Were this result true, it would imply that S(0) = −1, namely that the phase shift remains π/2
even in the presence of the Hubbard repulsion. In other words, the resonance that exists right
at the chemical potential at U = 0, should survive for any U . This perturbative argument is
compatible with the low-temperature behavior of diluted magnetic impurities if one assumes
that the role of U is to shrink the resonance to a small value of order TK . Indeed, if we assume
that, at small ε, the 
mΣ is negligible and

�eΣ(ε) � −ε
(

1 − 1
Z

)
, (3.27)

with Z < 1 [1 − Z �
(
U ρ

(0)
d (0)

)2
at second order in U ], then

G(ε+ i0+) � Z

ε+ i Z Γ
, (3.28)

which implies that the effective resonance-width is Z Γ, which can become very small if Z � 1.
In addition, this simple argument can also justify why the resonance remains pinned close to

the chemical potential. Indeed, if we introduce back a small εd, the �eΣ(ε = 0) becomes finite.
If we define a corrected resonance energy as

ε∗d = εd + �eΣ(ε = 0), (3.29)

then
G(ε+ i0+) � Z

ε− Z ε∗d + i Z Γ
.

In other words, the resonance is shifted only by Z ε∗d, which, provided ε∗d is of the same order as
εd, does imply a resonance pinned near the chemical potential.

These perturbative arguments are very suggestive, yet they rely on the assumption that
perturbation theory does not break at some critical value of U .
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3.1.2 Mean-field analysis of the interaction

In order to understand whether the small U regime is adiabatically connected to the large U
one, it is convenient to adopt a different approach more appropriate for strong coupling.

The first question which we address is how strong U should be to move appreciably the
model away from the U = 0 resonant-level behavior. Let us consider again the case εd = 0 and
switch on the interaction

U

2
(n̂d − 1)2 = U n̂d↑ n̂d↓ − U

2
n̂d.

The second term gives an εd = −U/2. Let us treat the first term within Hartree-Fock approxi-
mation, searching for a magnetic solution. The self-energy for the spin σ impurity electrons is

Σ σ
[G]

− σ

U N − σd
= =

Figure 3.3: Self-energy within the Hartree-Fock approximation.

given by, see Fig. 3.3,
Σσ = U Nd−σ, (3.30)

where
Nd−σ = 〈n̂d−σ〉,

is the average value, which has to be evaluated self-consistently. Therefore the impurity Green’s
function is

Gσ(z) =
1

z − εd − Δ(z) − Σσ(z)
=

1
z + U

2 − Δ(z) − U Nd−σ

, (3.31)

as if εdσ = −U/2 + U Nd−σ. By writing Nd σ = 1/2 + mσ we find through (B.4) the self-
consistency condition

m =
1
π

tan−1 U m

Γ
. (3.32)

There are two possibilities. If U ≤ πΓ the only solution is m = 0. It describes a paramagnetic
impurity and corresponds to the previous analysis at U = 0. If U > πΓ, there are two stable
solutions at finite m = ±m0, which describe a partially polarized impurity. Since these two
solutions are degenerate, the entropy S = ln 2 just reflects the spin degrees of freedom. In other
words, the magnetic state m �= 0 describes indeed a local moment. If we assume a density matrix
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Figure 3.4: DOS of the AIM within the Hartree-Fock approximation.

which is the average of the two degenerate ground states, then the impurity Green’s function
reads:

G(z) =
1
2

[
1

z + U m+ iΓsign Imz
+

1
z − U m+ iΓsign Imz

]
, (3.33)

and the DOS is composed by two lorentians, one below and one above the chemical potential,
which are called the Mott-Hubbard bands. In particular, if U � Γ, m → 1/2 and the two
lorentians are separated by an energy roughly of order U , see Fig. 3.4.

The mean-field solution for large U of the Anderson impurity model shows that, above some
value of the repulsion U , the mean-field solution looks indeed very different from the small-U
resonant-level behavior. Does this imply an actual breakdown of perturbation theory?
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3.2 From the Anderson to the Kondo model

The Hartree-Fock solution of the Anderson impurity model does explain in the large U/Γ-limit
the existence of local free moments in a metal well below its Fermi temperature. Nevertheless the
degeneracy of the mean-field solution is an artifact of mean-field theory, since the two solutions,
in the above example, are not orthogonal and can be coupled through the conduction electrons.

Let us use the fermionic field (3.18) so that the impurity Hamiltonian plus the hybridization
become

V
∑

σ

(
c†0σ dσ +H.c.

)
+
U

2
(n̂d − 1)2 . (3.34)

In the large U limit the impurity traps a single electron, either with spin up or down, and
we can treat the hybridization as a small perturbation lifting the degeneracy between the two
spin directions. By second order perturbation theory through intermediate states in which the
impurity is empty or doubly occupied, with energy difference equal to U/2 for large U , one gets
an effective operator lifting the impurity degeneracy given by, apart from constant terms,

−2V 2

U

∑
σσ′

c†0σdσ d
†
σ′c0σ′ + d†σ′c0σ′ c

†
0σdσ

= JK S0 · Sd

where

JK =
8V 2

U
,

and

S0 =
1
2

∑
αβ

c†0α σαβ c0β

=
1

2V 2

∑
kpαβ

Vk V
∗
p c

†
kα σαβ cpβ , (3.35)

Sd =
1
2

∑
αβ

d†α σαβ dβ . (3.36)

In other words, in the large U limit, the AIM reduces to the so-called Kondo model describing
conduction electrons antiferromagnetically coupled to a local moment, a spin-1/2 in our single-
orbital AIM example. The Kondo Hamiltonian is therefore

HK =
∑
kσ

εk c
†
kσckσ + JK S0 · Sd. (3.37)

We notice that this model has built-in a local moment, hence by construction correctly describes
the local moment regime for TK � T � TF . This local moment provides a scattering potential
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for the conduction electrons, with the major difference with respect to a conventional scalar
potential that the impurity has internal degrees of freedom. We will show now the consequences
of this difference.

3.2.1 The emergence of logarithmic singularities and the Kondo temperature

Let us analyse the role of the Kondo exchange

JK S0 · Sd, (3.38)

in perturbation theory. Since (3.38) conserves independently the number of conduction and
d-electrons, we use a trick due to Abrikosov and treat the impurity spin in terms of d-electrons
with an unperturbed Green’s function

G(0)(z) =
1
z
,

namely as a resonant state right at the chemical potential with a vanishing broadening, which
does contain in the “unperturbed state” just one electron, number which is not going to be
changed by (3.38). Since a single electron has a well defined spin, it acts indeed like a local
spin-1/2 moment. The Green’s function for the conduction electron c0 is given in (3.20). For
convenience let us rewrite (3.38) in a spin-asymmetric form as∑

i=x,y,z

Ji S
i
0 S

i
d, (3.39)

and calculate the first order corrections to the exchange as given by the diagrams in Fig. 3.5. For
simplicity we assume that all external lines are at zero frequencies. Each diagram is multiplied
by (-1) because of first order perturbation theory. The explicit expression of the diagram (a) is

(a) = −
∑

i,j=x,y,z

Ji Jj

∑
γc

Si
αγ S

i
ac S

j
γβ S

j
cb T

∑
n

G
(0)
0 (iεn)G(0)(−iεn)

= −
∑

i,j=x,y,z

JiJj

V 2

∑
γc

Si
αγ S

i
ac S

j
γβ S

j
cb T

∑
n

Δ(iεn)
−iεn

= −I(T )
∑

i,j=x,y,z

JiJj

V 2

∑
γc

Si
αγ S

j
γβ S

i
ac S

j
cb,

where the function of temperature I(T ) is defined through

I(T ) = −T
∑
n

Δ(iεn)
iεn

.

26



����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����J i Jj

J i Jj
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

α γ
β

αγβ

a c
b

a
c b

(b)

(a)

ε

ε

−ε

ε

Figure 3.5: First order corrections to the Kondo exchange. Solid and dashed lines indicate
impurity and conduction electron Green’s functions. Also indicated are the spin labels. All
external lines are assumed to be at zero frequency ε = 0. The internal frequency, which is going
to be summed over, is also indicated.

The diagram (b) is analogously

(b) = −
∑

i,j=x,y,z

Ji Jj

∑
γc

Si
αγ S

i
cb S

j
γβ S

j
ac T

∑
n

G
(0)
0 (iεn)G(0)(iεn)

= I(T )
∑

i,j=x,y,z

JiJj

V 2

∑
γc

Si
αγ S

j
γβ S

j
ac S

i
cb,

hence the sum is

(a) + (b) = I(T )
∑

i,j=x,y,z

JiJj

V 2

∑
γ

Si
αγ S

j
γβ

∑
c

(
Sj

ac S
i
cb − Si

ac S
j
cb

)
= I(T )

∑
i,j,k=x,y,z

JiJj

V 2

∑
γ

Si
αγ S

j
γβ i εjik S

k
ab,

where we used the commutation relations between the spin operators[
Si, Sj

]
= i εijk S

k,

where εijk is the Levi-Civita antisymmetric tensor. Since we sum over i and j, we can also write

(a) + (b) =
1
2
I(T )

∑
i,j,k=x,y,z

JiJj

V 2

∑
γ

Si
αγ S

j
γβ i εjik S

k
ab + (i↔ j)

=
1
2
I(T )

∑
i,j,k=x,y,z

JiJj

V 2
i εjik S

k
ab

∑
γ

(
Si

αγ S
j
γβ − Sj

αγ S
i
γβ

)
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=
∑

k=x,y,z

Sk
ab S

k
αβ

⎡⎣1
2
I(T )

∑
i,j

JiJj

V 2
|εijk|2

⎤⎦ ,
which provides the first order correction to the exchange constants according to

Jk + δJk = Jk +
1
2
I(T )

∑
i,j

JiJj

V 2
|εijk|2. (3.40)

In order to evaluate I(T ) we use the same integration contour as in Fig. B.1. We recall that the
hybridization function has a branch cut approximately given by

Δ(ε+ i0+) − Δ(ε− i0+) = −2 iΓ θ(W − |ε|),
where θ(W − |ε|) is the Heavyside function and W a cut-off of the order of the conduction
bandwidth. We then find that

I(T ) = −
∫ W

−W

dε

π
f(ε)

Γ
ε
� Γ
π

ln
W

T
,

so that e.g. in the isotropic case Jx = Jy = Jz = J we finally get

J + δJ = J +
Γ

π V 2
J2 ln

W

T
.

In other words the perturbation theory in J generates logarithmic singularities which become
visible roughly around a temperature, that has to be identified with the Kondo temperature,
when the correction becomes of the same order as J , namely

J =
Γ

π V 2
J2 ln

W

TK
,

leading to

TK = W exp
(
−πV

2

ΓJ

)
= W exp

(
−πU

8Γ

)
�W ∼ TF , (3.41)

since U � Γ. In agreement with experiments, we do find that the Kondo temperature is much
smaller than the host-metal Fermi temperature. Since perturbation theory becomes meaningless
below TK , the next obvious question is how to proceed further.

3.2.2 Anderson’s scaling theory

What we have calculated so far is the first order correction to the Kondo exchange for conduction
and impurity electrons at zero frequency, which we found to be

Jz [W ] + δJz [W ] = Jz [W ] +
Γ

π V 2
J⊥[W ]2 ln

W

T
, (3.42)
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J⊥[W ] + δJ⊥[W ] = J⊥[W ] +
Γ

π V 2
J⊥[W ]Jz [W ] ln

W

T
. (3.43)

In (3.42) and (3.43) we have assumed an easy-axis asymmetry Jz �= Jx = Jy ≡ J⊥, and we
have explicitly indicated the dependence upon the bandwidth cut-off W . Clearly the result does
not change for finite external frequencies provided they are much smaller than the temperature,
otherwise they would cut-off the log-singularity instead of T . Now suppose we have another
model with a smaller conduction electron bandwidth cut-off W (s) = W/s with s > 1, different
J ’s but equal Γ/V 2. In this case, for electrons close to the chemical potential, specifically much
closer than the temperature, we would get the first order correction

Jz [W (s)] + δJz [W (s)] = Jz [W (s)] +
Γ

π V 2
J⊥ [W (s)]2 ln

W

sT
,

J⊥ [W (s)] + δJ⊥ [W (s)] = J⊥ [W (s)] +
Γ

π V 2
J⊥ [W (s)] Jz [W (s)] ln

W

sT
.

On the other hand, it makes not really a big difference for the low energy behavior whether
these electrons which lie so close to the chemical potential derive from a band with width W
or W (s) provided they suffer the same scattering off the impurity. Therefore we can ask the
following question:

what should J [W (s)] be in order for the effective exchange up to first order to be the same as
that one with bandwidth W ?

The answer is quite simple, since we can re-write e.g. (3.42) as

Jz [W ] + δJz [W ] = Jz [W ] +
Γ

π V 2
J⊥[W ]2 ln(s) +

Γ
π V 2

J⊥[W ]2 ln
W

sT

�
(
Jz [W ] +

Γ
π V 2

J⊥[W ]2 ln(s)
)

+
Γ

π V 2

(
Jz[W ] +

Γ
π V 2

J⊥[W ]2 ln(s)
)2

ln
W

sT
+O

(
J3
)
,

the equality being valid up to the order at which we have stopped the expansion. Therefore
the two models with W and W/s have the same spin exchange up to first order in perturbation
theory provided the bare exchange constants satisfy

Jz [W (s)] = Jz[W ] +
Γ

π V 2
J⊥[W ]2 ln(s),

J⊥ [W (s)] = J⊥[W ] +
Γ

π V 2
J⊥[W ]Jz[W ] ln(s),

which can be cast in a differential form

djz(s)
d ln s

= j⊥(s)2, (3.44)
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Figure 3.6: Scaling flow of the Kondo exchange constants as the cut-off is sent to zero.

dj⊥(s)
d ln s

= j⊥(s) jz(s), (3.45)

having defined

Ji [W (s)]
Γ

π V 2
≡ ji(s).

These equations describe how the bare exchange constants have to be modified in order for the
model with a reduced bandwidth W/s to have the low-energy scattering amplitudes equal to
those of the original model. The idea behind is that, if we are able to follow the evolution of ji(s)
until W/s ∼ T , at this point we could rely on perturbation theory since ln(W/sT ) � 0. This is
more or less how Anderson formulated his poor man’s scaling theory for the Kondo problem in
1970 which is in essence the first implementation of a Renormalization Group transformation.

Let us study the scaling equations. We readily find that, ln s = x,

d2jz
dx2

= 2j⊥
dj⊥
dx

= 2 jz
djz
dx

=
dj2z
dx

.

By integrating from x = ln s = ln 1 = 0, the initial condition W (s) = W , to same x > 0 we get

djz(x)
dx

− djz(0)
dx

=
djz(x)
dx

− j⊥(0)2 = jz(x)2 − jz(0)2,

namely

djz(x)
dx

= jz(x)2 − jz(0)2 + j⊥(0)2,

d ln j⊥(x)
dx

= jz(x).

In Fig. 3.6 it is shown the scaling flow of the exchange constants jz(x) and j⊥(x) as x → ∞.
Since the sign of J⊥ can be always changed by rotating of an angle π the impurity spin around
the z-axis, we have just drawn the flow with J⊥ > 0, Jz > 0 and Jz < 0 implying antiferro- and
ferro-magnetic Kondo exchange, respectively. We notice that for ferromagnetic exchange Jz < 0
with |Jz | ≥ J⊥, the couplings flow to a line of fixed points, where perturbation theory become
valid. In particular for isotropic couplings Jz = J⊥ = J < 0, the value at x = lnW/T � 1 is

j(T ) =
j

1 − j lnW/T
� − 1

lnW/T
→ 0. (3.46)
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This suggests that the impurity asymptotically decouples from the conduction electrons. For
instance the impurity magnetic susceptibility, which can be calculated perturbatively in this
case, behaves at low temperatures as

χ(T ) ∼ 1
T lnW/T

,

almost the Curie-like behavior of a free spin.

For antiferromagnetic Jz > 0, as well as for Jz < 0 but |Jz| < J⊥, the exchange constants flow
to strong-coupling jz � j⊥ → +∞. This implies that the electrons very close to the chemical
potential feel a very strong antiferromagnetic exchange with the impurity spin. It is therefore
reasonable to assume that one has to diagonalize the Kondo spin-exchange first, Eq. (3.38), and
only then treats what is left within perturbation theory. Taking this point of view, the first step
leads to assume that the electronic state c0, see (3.18), get strongly bound into a spin-singlet
with the impurity spin. This singlet state has no internal degrees of freedom, hence it can act
only as a scalar potential for the left-over electronic states orthogonal to c0. The question is
what should be the scattering phase shift induced by this spin-singlet object. Since the impurity
traps just one electron, from the Friedel sum rule we expect

δ↑ + δ↓ = π.

Since the trapping occurs into a singlet state, which is spin-isotropic, δ↑ = δ↓, hence

δ↑ = δ↓ =
π

2
.

In other words, the phase shift is indeed the same as we found at very small U , which supports
the hypothesis that perturbation theory does not break down. In reality we do know that
this is actually the case thanks to exact solutions obtained either by the Wilson numerical
renormalization group or by Bethe Ansatz.

3.3 The impurity model from weak to strong repulsion and the
DMFT results

Since the weak coupling regime U � Γ is adiabatically connected to the strong coupling one,
U � Γ, let us discuss more in detail the perturbative expression of the impurity Green’s function
Eq. (3.28) for very small ε, i.e.

G(ε+ i0+) � Z

ε+ i Z Γ
. (3.47)

The low energy DOS is still a lorentian with a narrower width TK = Z Γ and total spectral
weight Z. The rest 1−Z of the spectral weigth should be concentrated into some higher-energy
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part. The low-energy peak, commonly called Abrikosov-Suhl or Kondo resonance, has to survive
even for very large U , although its spectral weigth would become very small, Z � 1.

On the other hand we have seen that, for very large U , when the mapping onto the Kondo
model is valid, most of the spectral weight should be concentrated into two features at ener-
gies ±U/2, the so-called Hubbard side-bands, see Fig. 3.4. Therefore the obvious conclusion,
supported by numerical results, is that, for U � Γ, the impurity spectral function has three
distinct features: two Hubbard side-bands centered at ±U/2 and a very narrow Kondo resonance
close to the chemical potential, see Fig. 3.7. This narrow resonance shrinks as U increases and
disappears only if U → ∞.

D
O

S

0
energy

Figure 3.7: The impurity DOS for large U . The central peak is the Kondo resonance, while the
other two are the Hubbard bands.

3.3.1 DMFT scenario for the Mott transition

Within DMFT, a single-band Hubbard model in the Bethe lattice can be mapped onto the
single-orbital Anderson impurity model (3.3) provided that the hybridization function and the
impurity Green’s function satisfy the self-consistency relation

Δ(z) = t2 G(z). (3.48)

The role of self-consistency is crucial. Indeed, as U increases we know that impurity spectral
weight is transferred from the central resonance into the Hubbard side-bands and, at the mean-
time, the central peak shrinks. As a result of self-consistency, the low-frequency component
of the hybridization width decreases like the spectral weight of the Kondo resonance. This
cooperative effect leads to a vanishing low-frequency hybridization, which implies a vanishing
TK for the impurity model, at a finite value of U = Uc, while in the impurity model without
self-consistency TK → 0 only if U → ∞. Once Tk = 0, only the Hubbard side-bands remain,
separated by an energy gap of order U . Since the impurity spectral function correponds, within
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the DMFT mapping, to the local spectral function of the lattice model, the vanishing of TK

corresponds to the opening of a gap in the single-particle spectral function of the lattice model,
namely to the Mott transition.

Notice that, since the impurity self-energy Σ(iεn) is also the lattice self-energy then, in the
metallic phase prior to the Mott transition, the low-energy lattice Green’s function is, through
(3.27),

G(k, iεn) =
1

iεn − εk − Σ(iεn)
� Z

iεn − Z εk
, (3.49)

and describes low-energy coherent quasiparticles with residue Z, namely effective Fermi temper-
ature Z times smaller than the non-interacting one, T ∗

F = Z TF , and renormalized bandwidth
ZW , i.e. renormalized mass m∗ = m/Z. In other words, until the effective impurity model
posseses the Kondo resonance, the lattice model describes a metal with coherent quasiparticles.
The Mott transition, being signaled by Z → 0, corresponds to T ∗

F → 0 and, at the same time,
m∗ → ∞. This behavior is what is commonly denoted as Brinkmann-Rice scenario for the Mott
transition.

The last very important thing to point out is that the Mott transition corresponds to an
impurity model with very small TK → 0, namely well inside the regime in which the mapping
onto a Kondo model is valid.
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Appendix A

Brief introduction to scattering
theory

We start by showing why the existence of local moments in a metal for T � TF is so puzzling.
Let us consider an impurity imbedded in a normal metal. We only take into account the

valence band, described by the Hamiltonian

H0 =
∑
k,σ

εk c
†
kσckσ. (A.1)

The scattering potential provided by the impurity has the general form

V =
∑
σ

∑
k,p

Vkp c
†
kσcpσ, (A.2)

where Vkp are the matrix elements of the impurtity potential onto the valence band Block waves.
The single-particle Green’s function in complex frequency for the full Hamiltonian H =

H0 + V can be formally written as the matrix

Ĝ(z) =
1

z − Ĥ
. (A.3)

Analogously the unperturbed one is

Ĝ0(z) =
1

z − Ĥ0

. (A.4)

The above operators have the following interpretation. If we consider for instance the inverse of
the Green’s function Ĝ, namely

Ĝ(z)−1 = z − Ĥ,
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in the basis set of the valence band Block waves, this is the matrix(
Ĝ(z)−1

)
kσ,pσ′

= δσσ′ [δkp z − δkp εk − Vkp] , (A.5)

hence the Green’s function is the inverse of the above matrix. Suppose that we have diagonalized
the full Hamiltonian and got the eigenvalues εa’s. In the diagonal basis also the Green’s function
is diagonal with matrix elements

G(z)ab = δab
1

z − εa
.

Therefore we readily find that

− 1
π

lim
δ→+0


mTr
(
Ĝ(z = ω + iδ)

)
= − 1

π
lim

δ→+0

m

∑
aσ

1
ω − εa + iδ

=
∑
aσ

δ(ω − εa) ≡ ρ(ω),

where ω is a real frequency and ρ(ω) is the density of states (DOS). Since the trace is invari-
ant under unitary transformations, hence also under the transformation which diagonalizes the
Hamiltonian, it is generally true that

− 1
π

lim
δ→+0


mTr
[
Ĝ(z = ω + iδ)

]
= ρ(ω). (A.6)

Analogously

− 1
π

lim
δ→+0


mTr
[
Ĝ0(z = ω + iδ)

]
= ρ0(ω) =

∑
kσ

δ(εk − ω), . (A.7)

gives the DOS of the host metal.
Let us formally write the full Green’s function as

Ĝ =
1

z − Ĥ0 − V̂
=

1
Ĝ−1

0 − V̂

=
1

1̂ − Ĝ0 V̂
Ĝ0 = Ĝ0 + Ĝ0 V̂

[
1̂ − Ĝ0 V̂

]−1
Ĝ0

≡ Ĝ0 + Ĝ0 T̂ Ĝ0, (A.8)

which provides the definition of the so-called T -matrix, namely

T̂ (z) = V̂
[
1̂ − Ĝ0 V̂

]−1
. (A.9)

From now on we will assume z = ω + iδ with δ a positive infinitesimal number, so we will
not explicitly indicate the limδ→+0. We notice that

∂

∂z
ln Ĝ(z) = −Ĝ(z),
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so that
ρ(ω) =

1
π

∂

∂z

{

mTr ln Ĝ(z)

}
. (A.10)

We are interested in the variation of the DOS induced by the impurity, which, by making
use of (A.8) and (A.9), is given by

Δρ(ω) = ρ(ω) − ρ0(ω)

=
1
π

∂

∂z

{

mTr ln

[
Ĝ(z) Ĝ0(z)−1

]}
=

1
π

∂

∂z

{

mTr ln

[
1

1̂ − Ĝ0(z) V̂

]}

=
1
π

∂

∂z

{

mTr ln V̂ −1 T̂ (z)

}
. (A.11)

We define the matrix of the scattering phase shifts

δ̂(z) = 
m ln V̂ −1 T̂ (z) = Arg
(
V̂ −1 T̂ (z)

)
, (A.12)

through which

Δρ(ω) =
1
π

∂

∂ω
Trδ̂(ω). (A.13)

We notice that for |z| → ∞, Ĝ0(z) → 1/z → 0, hence T̂ (z) → V̂ and δ̂(z) → 0.
The variation of the total number of electrons, ΔNels, induced by the impurity at fixed

chemical potential μ is therefore

ΔNels =
∫ μ

−∞
dωΔρ(ω) =

1
π

Trδ̂(μ), (A.14)

which is the so-called Friedel sum rule.
Let us go back to the definition of the T -matrix (A.9). One readily finds that its inverse is

given by
T̂ (z)−1 =

[
V̂ −1 − Ĝ0(z)

]
.

Since the Hamiltonian is hermitean, then[
T̂ (z)−1

]†
=
[
V̂ −1 − Ĝ0(z∗)

]
,

so that [
T̂ (z)−1

]† − T̂ (z)−1 =
[
Ĝ0(z) − Ĝ0(z∗)

]
.
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Therefore

T̂ (z)†
{[
T̂ (z)−1

]† − T̂ (z)−1

}
T̂ (z) = T̂ (z) − T̂ (z)†

= T̂ (z)†
[
Ĝ0(z) − Ĝ0(z∗)

]
T̂ (z). (A.15)

Since
Ĝ0(z) − Ĝ0(z∗) = −2πiδ

(
ω − Ĥ0

)
,

the Eq. (A.15) implies the following identity

Tkp(ω) − T †
kp(ω) = −2πi

∑
q

T †
kq(ω) δ(ω − εq) Tqp(ω), (A.16)

which is the so-called optical theorem. It also shows that the imaginary part of the T -matrix is
finite only within the conduction band.

Let us now analyse the on-shell T -matrix

Tkp(ε),

where εk = εp = ε. We can rewrite the on-shell optical theorem as follows

−2πi δ (εk − εp)
[
Tkp(ε) − T †

kp(ε)
]

= (−2πi)2 δ (εk − εp)
∑
q

T †
kq(ε) δ(εk − εq) Tqp(ε).

The above equation implies that, if we introduce the so-called on-shell S-matrix through

Skp(ε) = δkp − 2πi δ (εk − εp) Tkp(ε), (A.17)

where, as before, εk = εp = ε, then it follows that the S-matrix is unitary, i.e

Ŝ Ŝ† = Î . (A.18)

Skp(ε) is the transition probability that an electron in state k scatters elastically into state p.
Since it is unitary, it follows that only elastic scattering survives.

A.0.2 Three dimensional example

Let us consider the simpler case of a spherical Fermi surface, i.e. εk = εk depending only on the
modulous of the wavevector. In addition we assume that the matrix elements Vkp only depend
on the angle between the two wavevectors, θkp, hence can be expanded in Lagrange polynomials

Vkp =
∑

l

Vl (2l + 1)Pl (cos θkp) . (A.19)
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Then also the T -matrix has a similar expansion

Tkp(z) =
∑

l

tl(z) (2l + 1)Pl (cos θkp) . (A.20)

Since ∫
dΩq

4π
Pl (cos θkq) Pl′ (cos θqp) =

1
2l + 1

δll′ Pl (cos θkp) ,

the optical theorem transforms into

tl (ω) − t∗l (ω) = 2iImtl (ω) = −2πi ρ(ω) |tl (ω)|2 , (A.21)

where ρ(ω) is the bare conduction electron density of states per spin. Since

tl(ω) = |tl(ω)| eiδl(ω),

it follows that
tl(ω) = − 1

πρ(ω)
sin δl(ω) eiδl(ω), (A.22)

and
Sl(ω) = e2iδl(ω). (A.23)

If the concentration of impurity is very low, then the scattering rate suffered by the electrons
is given by the Fermi-golden rule with the T -matrix, namely

1
τk

= 2π ni

∑
q

T †
kq(ω) δ(ω − εq) Tqk(ω) (1 − cos θkq) ,

where ni is the impurity concentration and the last term is a geometric factor which guarantees
that forward scattering, θ = 0, does not contribute to the current dissipation. Since

(2l + 1) z Pl(z) = (l + 1)Pl+1(z) + l Pl−1(z),

we obtain
1

ni τk(ω)
= 2π ρ(ω)

∑
ll′

t∗l (ω) tl′(ω)
∫
dΩq

4π
(2l + 1)Pl(cos θkq)[

(2l′ + 1)Pl′(cos θkq) + (l′ + 1)Pl′+1(cos θkq) + l′ Pl′−1(cos θkq)
]

= 2π ρ(ω)
∑

l

(2l + 1) |tl(ω)|2 + l t∗l (ω) tl−1(ω) + (l + 1) t∗l (ω) tl+1(ω), (A.24)

which, as expected, gives a scattering rate independent of momentum. If, as usual, only s-wave
scattering occurs, then tl(ω) = δl0 t(ω) as well as δl(ω) = δl0 δ(ω), hence

1
τ(ω)

= 2π ni ρ(ω) |t(ω)|2 =
2

πρ(ω)
sin2 δ(ω), (A.25)

thus leading to a zero-temperature residual resistivity proportional to ni sin2 δ(0).
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A.1 General analysis of the phase-shifts

Let us keep assuming a spherically symmetric case and in addition only s-wave scattering. Then
the phase shift is δl(ω) = δl0 δ(ω) defined through the l = 0 component of the T -matrix

δ(ω) = tan−1 Imt(ω)
�e t(ω)

.

An important role is played by the frequencies at which the real part vanishes.
The first possibility is that this occurs outside the conduction band, either below or above.

In this case we know that the imaginary part is zero. This implies that the phase-shift jumps
by π at these energies so that the variation of the DOS is δ-like. In this case one speaks about
bound states which appear outside the conduction band. Clearly this possibility can not explain
a Curie-Weiss behavior for T � TF . Indeed at very low temperature the bound state is either
doubly occupied, if below the conduction band, or empty, if above, and one needs a temperature
larger than the conduction bandwidth, hence larger that TF , to release its spin entropy.

The other possibility is that the real part vanishes at a frequency ω∗ within the conduction
band where the imaginary part is non zero. Around ω∗ and assuming a real part linearly
vanishing and an imaginary part roughly constant we get

δ(ω) � tan−1 Γ
ω − ω∗

,

which implies a phase-shift δL(ω∗) = ±π/2 and leads to a Lorentian DOS variation

Δρ(ω) ∼ 1
π

Γ
(ω − ω∗)2 + Γ2

. (A.26)

This is called a resonance. Clearly, in other for this resonance to contribute at T � TF , ω∗
should be very close to the chemical potential, in particular |ω∗ − μ| � TK , and, in addition,
Γ � TK .

Let us therefore assume Γ = TK and for further simplicity that the resonance is right at
the chemical potential, i.e. ω∗ = 0. The contribution of the resonant state to the magnetic
susceptibility is then given by

Δχ(T ) = −μB g

∫
dε

∂f(ε)
∂ε

1
π

TK

ε2 + T 2
K

, (A.27)

where
f(ε) =

(
1 + eβε

)−1
,

is the Fermi distribution. One readily finds that for T � TK ,

Δχ � μB g
1
T
,
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while for T � TK

Δχ � μB g
1

πTK
,

similar to the observed behavior. In addition the resistivity would be given through (A.24) by
(ρ(ω) ∼ ρ(0) ≡ ρ0)

R(0) ∝ 1
τ(0)

= ni
2
πρ0

sin2 δ(0)

= ni
2
πρ0

, (A.28)

again compatible with the almost unitary limit, δ(0) = π/2, observed experimentally. Therefore
the existence of a narrow resonance near the chemical potential with width exactly given by TK

would seem the natural explanation to what experiments find.
However this is evidently very strange, since the Kondo behavior is observed in many different

host metals as well as for different magnetic impurities, hence it would be really surprising that
in all these cases a resonance appears always pinned near the chemical potential.

Moreover this simple single-particle scenario fails to explain the entropy released above TK .
Indeed, for T � TK the resonance is effectively like an isolated level which can be empty, singly
occupied with a spin up or down, or doubly occupied. Therefore its entropy should be S = 2 ln 2.
On the other hand the experiments tells us that only spin and orbital degrees of freedom are
released above TK , which amounts in the above simplified model to an entropy S = ln 2. In
other words a resonance at the chemical potential at temperatures larger than its broadening
is not at all the same as a local moment, since the former does have valence fluctuations which
are absent in the latter.

Therefore, although the resonance scenario is suggestive, it is not at all the solution to the
puzzle.
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Appendix B

The Gutzwiller variational approach
to the AIM

In this section we will study the AIM by means of a Gutzwiller-type of variational wave-function.
However, before that, we need some additional results for the simple resonant level model.

B.1 Variation of the electron number

The variation of the electron number per spin due to the impurity is known to be related to the
Green’s functions through

ΔNels = T
∑
n

[
G(iωn) +

∑
k

Gkk(iωn) −G
(0)
kk(iωn)

]
eiωn0+

= T
∑
n

1
iωn − εd − Δ(iωn)

[
1 +

∑
k

|Vk|2
(

1
iωn − εk

)2
]

= T
∑
n

∂

∂iωn
ln (iωn − εd − Δ(iωn)) , (B.1)

Let us consider the contour drawn in Fig. B.1. The function S(z) = ln(z − εd −Δ(z)) has a
branch cut on the real axis and it is analytic everywhere else. Therefore∮

dz

2πi
f(z)

∂

∂z
S(z) = 0,

because in the region which excludes both axes the function is analytic. On the other hand

0 =
∮

dz

2πi
f(z)

∂S(z)
∂z

= T
∑
n

∂

∂iωn
ln (iωn − εd − Δ(iωn))
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Re z

Im z

Figure B.1: Integration contour.

+
∫ +∞

−∞

dε

2πi
f(ε)

∂

∂ε

[
S(ε+ i0+) − S(ε+ i0+)

]
Therefore we finally get

ΔNels = −
∫ +∞

−∞

dε

2πi
f(ε)

∂

∂ε

[
S(ε+ i0+) − S(ε− i0+)

]
. (B.2)

Within the previous approximation

S(ε+ i0+) − S(ε− i0+) = ln (ε− εd + iΓ) − ln (ε− εd − iΓ) = 2i tan−1 Γ
ε− εd

,

hence, through Eq. (3.15),

ΔNels =
∫ +∞

−∞
dε f(ε)

1
π

Γ
(ε− εd)2 + Γ2

= Nd. (B.3)

In other words the change in the number of electrons only comes from those electrons occu-
pying the impurity level. If for instance εd↑ is different from εd↓, at zero temperature the number
of electrons at the impurity with spin σ is

Ndσ =
1
2
− 1
π

tan−1 εdσ

Γ
. (B.4)

B.2 Energy variation

For later convenience, we calculate here the impurity contribution to the total energy. Suppose
that we change Vk → λVk. The total energy becomes a function of λ, E(λ), which, by the
Helmann-Feynmann theorem, satisfies

∂E(λ)
∂λ

= 〈Ψλ|∂H
∂λ

|Ψλ〉
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=
∑
kσ

〈Ψλ|Vk c
†
kσdσ +H.c. |Ψλ〉 = 2T

∑
n

∑
k

VkGdk(iωn;λ) + V ∗
k Gkd(iωn;λ).

Here |Ψλ〉 is the ground state wavefunction at a fixed λ, and G(iωn;λ) are the corresponding
Green’s functions. Specifically

Gkd(z;λ) = λ
Vk

z − εk

1
z − εd − λ2 Δ(z)

, (B.5)

Gdk(z;λ) = λ
V ∗
k

z − εk

1
z − εd − λ2 Δ(z)

, (B.6)

with Δ(z) defined in Eq. (3.7). Therefore

∂E(λ)
∂λ

= 4T
∑

n

∑
k

λ
|Vk|2

iωn − εk

1
iωn − εd − λ2 Δ(iωn)

= 4T
∑

n

λΔ(iωn)
1

iωn − εd − λ2 Δ(iωn)
= −2T

∑
n

∂

∂λ
ln
(
iωn − εd − λ2 Δ(iωn)

)
,

so that the energy variation due to the impurity is

E(λ) − E(0) = −2T
∑
n

ln
(
iωn − εd − λ2 Δ(iωn)

iωn − εd

)
. (B.7)

In addition the average value of the hybridization at fixed λ is

Ehyb(λ) =
∑
kσ

〈Ψλ|λVk c
†
kσdσ +H.c. |Ψλ〉 = λ

∂E(λ)
∂λ

, (B.8)

so that the change in the bath energy is given by

Ebath(λ) − Ebath(0) = E(λ) − E(0) − Ehyb(λ) = E(λ) − E(0) − λ
∂E(λ)
∂λ

. (B.9)

To calculate (B.7) we use the same integration contour as in Fig. B.1. By noticing that

ln(ε− εd + i0+) − ln(ε− εd − i0+) = 2i tan−1 0+

ε− εd
= 2π i θ(εd − ε),

we find

E(λ) − E(0) = 2
∫
dε

π
f(ε)

[
tan−1 λ2Γ

ε− εd
− π θ(εd − ε)

]
. (B.10)

Let us evaluate this integral in the simple case εd = 0 at zero temperature, where

E(λ) − E(0) = 2
∫ 0

−∞

dε

π

[
tan−1 λ

2Γ
ε

− π

]
= − 2

π
λ2 Γ ln

We

λ2 Γ
. (B.11)
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Therefore the full energy gain is

ΔE = − 2
π

Γ ln
We

Γ
, (B.12)

which derives from an hybridization gain

Ehyb = − 4
π

Γ ln
W

Γ
, (B.13)

and a bath energy cost

ΔEbath =
2
π

Γ ln
W

eΓ
. (B.14)
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B.3 The Gutzwiller wavefunction

Armed with the previous results, let us introduce a variational wavefunction for a single-orbital
AIM. The Hamiltonian is

HAIM =
∑
kσ

εk c
†
kσckσ (B.15)

+V
∑
kσ

(
c†kσdσ +H.c.

)
+
U

2
(nd − 1)2 (B.16)

= Hbath + Hhyb + Hint, (B.17)

and is assumed to be particle-hole symmetric. We consider an uncorrelated wave-function, |ψ0〉,
which is the ground state of a non-interacting impurity with a variational hybridization strength
λV . The variational correlated wave-function is defined through

|ψ〉 ≡ PG |ψ0〉, (B.18)

where the operator PG acts only on the impurity and is given by

PG ≡ λ0

(
|0〉〈0| + |2〉〈2|

)
+ λ1 |1〉〈1|. (B.19)

λ0 and λ1 are variational parameters and |n〉〈n| is the projector at the impurity site onto a state
with n electrons, |1〉〈1| being the sum of the projectors onto a singly occupied impurity orbital
with both spin up and down. Notice that, by construction, PG preserves both particle-hole and
spin rotational symmetries. Since we can multiply PG by any constant, which is absorbed by
normalization, without loss of variational freedom we can impose the following condition:

〈ψ0| P2
G |ψ0〉 = 〈ψ0|ψ0〉 = 1.

This implies that

1 = λ2
0

(
P (0)(0) + P (0)(2)

)
+ λ2

1 P
(0)(1), (B.20)

where

P (0)(n) = 〈ψ0| |n〉〈n| |ψ0〉 =
1
4

(
2
n

)
are the occupation probabilities of the uncorrelated wavefunction. Notice that P (0)(0) = P (0)(2)
because of particle-hole symmetry. Let us define new variational parameters

P (0) = λ2
0 P

(0)(0),
P (1) = λ2

1 P
(0)(0),
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P (2) = λ2
0 P

(0)(2) = P (0),

through which (B.20) becomes

P (0) + P (1) + P (2) = 2P (0) + P (1) = 1.

One can regard P (n) as the correlated occupation probabilities. Indeed it follows that the
average impurity occupation

〈ψ0| PG

(∑
n

n |n〉〈n|
)
PG |ψ0〉 = P (1)+2P (2) = P (1)+2P (0) = 1 = 〈ψ0|

(∑
n

n |n〉〈n|
)
|ψ0〉,

which proves not only that the P (n)’s do behave as occupation probabilities, but also that, since∑
n n |n〉〈n| =

∑
σ d

†
σdσ, and, in addition, spin-rotational symmetry is preserved, the following

expression holds:

〈ψ0| P2
G d

†
σdσ′ |ψ0〉 = 〈ψ0| d†σdσ′ |ψ0〉 =

1
2
δσσ′ . (B.21)

It implies that, if we select out of the operator PG a creation and an annihilation operator and
average what is left with the uncorrelated wavefunction, this average is zero. From this property
it follows that

〈ψ0| PG Hbath PG |ψ0〉 = 〈ψ0|Hbath |ψ0〉 = E0 + ΔEbath(λ2 Γ), (B.22)

where E0 is the bath energy in the absence of the impurity, Γ is the hubridization width

Γ = π ρ0 V
2,

ρ0 being the conduction bath DOS, and ΔEbath is given in Eq. (B.14). In addition,

〈ψ0| PG Hhyb PG |ψ0〉 =
√
Z 〈ψ0|Hhyb |ψ0〉 =

√
Z

λ
Ehyb(λ2 Γ), (B.23)

see Eq. (B.13). The
√
Z prefactor is equal to

√
Z = 2 〈ψ0| PG d

†
σ PG dσ |ψ0〉 (B.24)

=
√

2P (0)P (1) +
√

2P (2)P (1) = 2
√

2P (0)P (1). (B.25)

Finally, it is straightforward to show that

〈ψ0| PG Hint PG |ψ0〉 = U P (0). (B.26)

We easily realize that the uncorrelated wave-function which minimizes the energy has λ =√
Z, implying Γ → Z Γ. Therefore the variational energy turns out to be, see Eq. (B.12),

E = E0 + ΔE(Z Γ) + U P (0). (B.27)
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We define P (0) = P (2) = d/2 hence P (1) = 1 − d, and Γ∗ = Z Γ. Therefore

Z = 4 d (1 − d).

In terms of Γ∗

d =
1
2
−
√

1
4
− Γ∗

4Γ
.

For large U, i.e. small d as well as small Γ∗,

∂d

∂Γ∗
� 1

4Γ
,

hence the minimum condition reads

∂E

∂Γ∗
= − 2

π
ln
W

Γ∗
+
U

8Γ
= 0,

with solution

Γ∗ = W exp
[
− U

16 ρ0 V 2

]
. (B.28)

I recall that the Kondo coupling is

JK = 8
V 2

U
,

so that

Γ = W exp
[
− 1

2 ρ0 JK

]
, (B.29)

which is actually the square root of TK . Therefore, in spite of the fact that the Gutzwiller
wave-function predicts correcly a ground state which looks the same as that of a resonant level
model with a reduced hybridization width, quantitatively the energy scale comes out too large.
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Appendix C

Fermi liquid theory of the Anderson
impurity model

In this Appendix we build up a Fermi liquid theory of a generic AIM closely following the original
work by Mihaly and Zawadowskii, and Yoshimori and Zawadowskii.

Let us consider more generally a multi-orbital Anderson impurity model with Hamiltonian

HAIM =
∑
ka

εka c
†
kacka +

∑
ka

(
Vka c

†
kada +H.c.

)
+
∑

a

εa d
†
ada + Hint

[
d†, d

]
. (C.1)

The Hamiltonian admits conserved quantities labelled by an index (i),

M(i) =
∑
kab

c†kaM
(i)
ab ckb +

∑
ab

d†aM
(i)
ab db. (C.2)

For convenience we adopt the normalization Tr
(
M (i) ·M (i)

)
= 1. By means of the Luttinger-

Ward functional one can prove that the variation ΔM (i) of the average value M (i) = 〈M(i)〉
associated with the presence of the impurity is given by

ΔM (i) =
∑
ab

M
(i)
ab

∮
dz

2πi
f(z)

∂

∂z
lnGba(z) =

∮
dz

2πi
f(z)

∂

∂z
Tr
(
M (i) lnG(z)

)
,

where the integration contour encloses clockwise the real axis, f(z) is the Fermi distribution
function in the complex plane and G(z) the matrix of the impurity single-particle Green’s func-
tions. Since the latters have a branch cut on the real axis, the above expression is also equal
to

ΔM (i) = − 1
π

∫ ∞

−∞
dε
∂f(ε)
∂ε


mTr
(
M (i) lnG(ε+ iδ)

)
(C.3)
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with δ an infinitesimal positive number. Let us consider one of the conserved operators (to
simplify notations we will drop its index). We can always rotate the basis set in such a way to
make this operator diagonal

M =
∑
k a

Ma c
†
kacka +

∑
a

Ma d
†
a da, (C.4)

leaving unchanged the non-interacting part of the Hamiltonian (C.1). In this representation, if
we add to (C.1) a perturbation

δHAIM = −hM, (C.5)

the impurity Green’s functions become

Gab(z, h)−1 = δab Ga(z, h)−1

= δab

[(
G(0)

a (z, h)
)−1

− Σa(z, h)

]
= z − εa + hMa − Δa(z, h) − Σa(z, h),

where
Δa(z, h) =

∑
k

|Vka|2 1
z − εka + hMa

(C.6)

is the hybridization function in the presence of the external field h, as opposed to the one in its
absence Δa(z, 0) ≡ Δa(z). We notice that(

∂Δa(z, h)
∂h

)
h=0

= Ma
∂Δa(z)
∂z

,

from which it follows that, by defining Ga(z, h = 0) ≡ Ga(z),(
∂ lnGa(z, h)

∂h

)
h=0

= −
(
∂ lnGa(z, h)−1

∂h

)
h=0

= −Ga(z)

[
Ma

(
1 − ∂Δa(z)

∂z

)
−
(
∂Σa(z, h)

∂h

)
h=0

]
.

In the presence of the field, also the average value of M changes, M → M(h), as well as its
variation in the presence of the impurity ΔM → ΔM(h). From the above formulas it follows
that the variation of the susceptibility Δχ is given by

Δχ =
(
∂ΔM(h)

∂h

)
h=0

=
∑

a

∫ ∞

−∞

dε

π

∂f(ε)
∂ε


m
{
Ma Ga(ε+ iδ)

×
[
Ma

(
1 −

(
∂Δa(z)
∂z

)
z=ε+iδ

)
−
(
∂Σa(ε+ iδ)

∂h

)
h=0

]}
. (C.7)
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On the other hand one can prove diagrammatically that

(
∂Σa(iωn)

∂h

)
h=0

= − 1
β

∑
m

∑
b

Γa,b;b,a(iωn, iεm; iεm, iωn)Gb(iεm)2

⎛⎜⎝∂
(
G(0)

a (iεm, h)
)−1

∂h

⎞⎟⎠
h=0

= − 1
β

∑
m

∑
b

Γa,b;b,a(iωn, iεm; iεm, iωn)Gb(iεm)2Mb

(
1 − ∂Δb(iεm)

∂iεm

)
,

(C.8)

where the interaction vertex is the reducible one.

Using the fact that M is conserved, the following Ward identity also holds[
Σa(iε+ iω) − Σa(iε)

]
Ma = − 1

β

∑
n

∑
b

Γa,b;b,a(iε+ iω, iεn; iεn + iω, iε)

×Mb Gb(iεn + iω)Gb(iεn) [iω − Δb(iεn + iω) + Δb(iεn)] . (C.9)

It follows that

∂Σa(iε)
∂iε

Ma = − 1
β

∑
n

∑
b

Γa,b;b,a(iε, iεn; iεn, iε)Mb Gb(iεn)2

− lim
iω→0

1
β

∑
n

∑
b

Γa,b;b,a(iε+ iω, iεn; iεn + iω, iε)

×Mb Gb(iεn + iω)Gb(iεn)

[
− Δb(iεn + iω) + Δb(iεn)

]
iω

= − 1
β

∑
n

∑
b

Γa,b;b,a(iε, iεn; iεn, iε)Mb Gb(iεn)2
(

1 − ∂Δb(iεn)
∂iεn

)

+
∫ ∞

−∞

dε′

2π
∂f(ε′)
∂ε′

∑
b

Γa,b;b,a(iε, ε′ − iδ′; ε′ + iδ′, iε)

×Mb Gb(ε′ + iδ′)Gb(ε′ − iδ′)
m
[
Δb(ε′ − iδ′) − Δb(ε′ + iδ′)

]
(C.10)

= − 1
β

∑
n

∑
b

Γa,b;b,a(iε, iεn; iεn, iε)Mb Gb(iεn)2
(

1 − ∂Δb(iεn)
∂iεn

)

+
∫ ∞

−∞

dε′

π

∂f(ε′)
∂ε′

∑
b

Γa,b;b,a(iε, ε′ − iδ′; ε′ + iδ′, iε)

×Mb Γb(ε′)Gb(ε′ + iδ′)Gb(ε′ − iδ′), (C.11)
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where, by definition,

Γb(ε′) =
1
2

m

(
Δb(ε′ − iδ′) − Δb(ε′ + iδ′)

)
is the non-interacting resonance-width.

By comparing (C.11) with (C.8) we find that(
∂Σa(iε)
∂h

)
h=0

=
∂Σa(iε)
∂iε

Ma −
∫ ∞

−∞

dε′

π

∂f(ε′)
∂ε′

∑
b

Γa,b;b,a(iε, ε′ − iδ′; ε′ + iδ′, iε)

×Mb Γb(ε′)Gb(ε′ + iδ′)Gb(ε′ − iδ′). (C.12)

Going back to the expression for the variation of the susceptibility, Eq. (C.7), and inserting
(C.12), we obtain the following result

Δχ =
∑

a

∫ ∞

−∞

dε

π

∂f(ε)
∂ε


m
{
Ma Ga(ε+ iδ)

×
[
Ma

(
1 −

(
∂Δa(z)
∂z

)
z=ε+iδ

−
(
∂Σa(z)
∂z

)
z=ε+iδ

)

+
∫ ∞

−∞

dε′

π

∂f(ε′)
∂ε′

∑
b

Γa,b;b,a(ε, ε′; ε′, ε)Mb Γb(ε′)Gb(ε′ + iδ′)Gb(ε′ − iδ′)

]}
(C.13)

in which we have assumed that the reducible vertex is analytic on the real axis.
Let us define the quantity

ρ∗a =
∫ ∞

−∞

dε

π

∂f(ε)
∂ε


m
{
Ga(ε+ iδ)

[
1 −

(
∂Δa(iε)
∂iε

)
iε→ε+iδ

−
(
∂Σa(iε)
∂iε

)
iε→ε+iδ

]}
, (C.14)

which plays actually the role of the quasi-particle DOS at the chemical potential, as opposed to
the particle DOS

ρa =
∫ ∞

−∞

dε

π

∂f(ε)
∂ε


mGa(ε+ iδ) ≡ −
∫ ∞

−∞

dε

π

∂f(ε)
∂ε

ρa(ε). (C.15)

Finally we notice that

Gb(ε′ + iδ′)Gb(ε′ − iδ′) =
1

ε′ − εb − Δb(ε′ + iδ′) − Σb(ε′ + iδ′)
1

ε′ − εb − Δb(ε′ − iδ′) − Σb(ε′ − iδ′)
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=
1

Δb(ε′ − iδ′) − Δb(ε′ + iδ′) + Σb(ε′ − iδ′) − Σb(ε′ + iδ′)

×
(
Gb(ε′ − iδ′) − Gb(ε′ + iδ′)

)

= π ρb(ε′)
1

Γb(ε′) + γb(ε′)
,

where we have defined

γb(ε′) =
1
2

m

(
Σb(ε′ − iδ′) − Σb(ε′ + iδ′)

)
, (C.16)

which is related to the quasiparticle decay rate. By means of the above expression and Eq. (C.14),
we can rewrite (C.13) as

Δχ =
∑

a

M2
a ρ

∗
a +

∑
ab

MaMb

∫ ∞

−∞

dε dε′

π

∂f(ε)
∂ε

∂f(ε′)
∂ε′


m
{
Ga(ε+ iδ) Γa,b;b,a(ε, ε′; ε′, ε) ρb(ε′)

Γb(ε′)
Γb(ε′) + γb(ε′)

}

=
∑

a

M2
a ρ

∗
a −

∑
ab

MaMb

∫ ∞

−∞
dε dε′

∂f(ε)
∂ε

∂f(ε′)
∂ε′

×ρa(ε) ρb(ε′) Γa,b;b,a(ε, ε′; ε′, ε)
Γb(ε′)

Γb(ε′) + γb(ε′)
, (C.17)

where the last expression is obtained by assuming that, for small frequencies, the reducible
vertex is real, hence that the only contribution to the imaginary part comes from


mGa(ε+ iδ) = −π ρa(ε).

Eq. (C.17) has a broad validity, even in cases like DMFT, in which the hybridization functions
may be strongly frequency-dependent.

In general the matrix elements of a conserved operators may be either diagonal or, if dif-
ferent states are degenerate, off-diagonal. In the former case only the diagonal elements of the
scattering vertex, Γa,b;b,a, enter the expression of the susceptibility. More interesting is the case
of degenerate levels, εka = εk and εa = ε in (C.1). Under the assumption that the interaction
does not spoil this degeneracy, ρa = ρ and ρ∗a = ρ∗. Since we assumed that Tr(M ·M) = 1, in
a generic basis in which M is not diagonal the susceptibility variation reads

Δχ = ρ∗ −
∑
abcd

MbaMdc

∫ ∞

−∞
dε dε′

∂f(ε)
∂ε

∂f(ε′)
∂ε′

ρ(ε) ρ(ε′) Γa,c;d,b(ε, ε′; ε′, ε)
Γ(ε′)

Γ(ε′) + γ(ε′)
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≡ ρ∗
[
1 −A

]
, (C.18)

with the Landau scattering parameters A defined through

A ≡ 1
ρ∗
∑
abcd

MbaMdc

∫ ∞

−∞
dε dε′

∂f(ε)
∂ε

∂f(ε′)
∂ε′

ρ(ε) ρ(ε′) Γa,c;d,b(ε, ε′; ε′, ε)
Γ(ε′)

Γ(ε′) + γ(ε′)
. (C.19)

In most common impurity models the hybridization functions have a smooth frequency-
dependence and, in addition, perturbation theory does not break down at any value of the
interaction. In these cases we have already seen that, at small frequency,

Σa(iε) � iε

(
1 − 1

Za

)
,

where Za is the so-called quasiparticle residue, hence that

ρ∗a =
ρa

Za
,

and γa(ε→ 0) = 0. Therefore (C.17) simplifies notably:

Δχ =
∑

a

M2
a ρ

∗
a −

∑
ab

MaMb ρa ρb Γa,b;b,a(0, 0; 0, 0)

=
∑

a

M2
a ρ

∗
a −

∑
ab

MaMb Za Zb ρ
∗
a ρ

∗
b Γa,b;b,a(0, 0; 0, 0). (C.20)

When orbital degeneracy also occurs

Δχ = ρ∗
[
1 −A

]
, (C.21)

when this time
A = Z2 ρ∗

∑
abcd

Mba Mdc Γa,c;d,b(0, 0; 0, 0), (C.22)

which is the common definition of the Landau A-parameters in terms of the quasiparticle scat-
tering amplitudes.

We conclude by noticing that the variation of the specific heat is, in the degenerate example,

ΔCv

CV 0
=
ρ∗

ρ0
, (C.23)
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where CV 0 and ρ0 are the specific heat and DOS, respectively, of the conduction electrons in the
absence of the impurity. On the other hand, for any conserved quantity, M(i), by Eq. (C.21) we
find that

Δχ(i)

χ0
=
ρ∗

ρ0

[
1 −A(i)

]
. (C.24)

In other words, we can define for each conserved quantity a corresponding Wilson ratio whose
value

R(i) =
Δχ(i)

χ0

CV 0

ΔCv
= 1 −A(i), (C.25)

is directly related to the Landau parameters.

C.1 Application to the single-orbital AIM

Let us apply these results to the single-orbital AIM. Two incoming quasi-particles at the same
frequency can only be into a singlet state, hence there is a single scattering parameter

Γ = Γ↑,↓;↓,↑ = Γ↓,↑;↑,↓ = −Γ↑,↓;↑,↓ = −Γ↓,↑;↓,↑. (C.26)

There are only two conserved quantities, the total charge, with M c
σσ′ = δσσ′/

√
2, and the total

spin, with Ms = σ/
√

2. Through (C.22) one finds that the charge, Ac, and spin, As, Landau
parameters are

Ac = Z2 ρ∗ Γ = −As ≡ A. (C.27)

We know that, for large U , the charge fluctuations of the impurity are suppressed, hence we can
assume that

χc = ρ∗
[
1 −A

]
= 0,

namely that A = 1. It follows that

χs = ρ∗
[
1 +A

]
= 2 ρ∗,

as well as
Rc = 0, Rs = 2.
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Chapter 4

Brief introduction to the Wilson
numerical renormalization group and
to Conformal Field Theory

A very powerful way to study impurity models is by combining together the Wilson numerical
renormalization group (NRG) and Conformal Field Theory (CFT). The former allows to de-
termine in a very efficient way the low energy spectrum of an impurity model which, unless in
simple cases, requires the full machinery of CFT to be interpreted. In the following we are going
to briefly discuss both techniques.

4.1 Reduction to a one dimensional model

Let us consider for simplicity a single-orbital AIM, the extension to more orbitals being straight-
forward,

HAIM =
∑
kσ

εk c
†
kσckσ +

(
Vk c

†
kσdσ +H.c.

)
+ Hint

[
d†, d

]
= H0 + Hhyb + Hint. (4.1)

We already observed that he impurity is actually coupled only to a particular combination of
conduction electrons:

c†0 =
1
V

∑
k

Vk c
†
k, (4.2)

where we have droped for simplicity the spin index and by definition

V 2 =
∑
k

|Vk|2 .
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Let us construct the single-particle state

|c0〉 = c†0 |0〉.
This is not an eigenstate of the conduction electron Hamiltonian H0. Indeed we can always
define a new state |c1〉 orthogonal to |c0〉 through

t0 |c1〉 ≡
(
H0 − ε0

)
|c0〉,

where
ε0 = 〈c0|H0 |c0〉,

and

t20 =
(
〈c0|H0|c1〉

)2

= 〈c0|
(
H0 − ε0

)2 |c0〉.

Analogously, at the next step we introduce a new state |c2〉 orthogonal to the previous two
through

t1 |c2〉 ≡
(
H0 − ε1

)
|c1〉 − t0 |c0〉,

where
ε1 = 〈c1|H0 |c1〉,

and

t21 =
(
〈c1|H0|c2〉

)2

= 〈c1|
(
H0 − ε1

)2 |c1〉 − t20.

At the n-th iteration of this Lanczos algorithm, we obtain a state |cn+1〉, orthogonal to the n
previous ones, by

tn |cn+1〉 ≡
(
H0 − εn

)
|cn〉 − tn−1 |cn−1〉,

where
εn = 〈cn|H0 |cn〉,

and

t2n =
(
〈cn|H0|cn+1〉

)2

= 〈cn|
(
H0 − εn

)2 |cn〉 − t2n−1.

In this way we can rewrite the Hamiltonian (4.1) like

HAIM = Hint

[
d†, d

]
+ V

∑
σ

(
c†0σdσ +H.c.

)
+
∑
n≥0

εn c
†
nσcnσ + tn

(
c†nσcn+1σ +H.c.

)
, (4.3)

which describes a semi-infinite chain with the impurity at the edge. Notice that, if the original
model has particle-hole symmetry, which implies that for any k there is a p such that Vk = V ∗

p

and εk = −εp, then, for any n ≥ 0, εn = 0.

56



In the most common situations in which the conduction electron DOS and the hybridization
function are smooth, the hopping matrix elements tn converge fastly to a constant value n-
independent.

As an example, let us consider a conduction electron DOS ρ(ε) = θ
(
1 − ε2

)
/2, constant

within the interval −1 ≤ ε ≤ 1 (in units of half-bandwidth) and zero outside. The chemical
potential is μ = 0. In addition we assume that the hybridization matrix elements Vε are equal
for any ε. In this case the conduction electron Hamiltonian is

H0 =
∫ 1

−1
dε ε c†εcε,

and

c†0 =

√
1
2

∫ 1

−1
dε c†ε.

If we write

c†n =

√
2n+ 1

2

∫ 1

−1
dε Pn(ε) c†ε,

with P0(ε) = 1, and assume ∫ 1

−1
dε Pn(ε)Pm(ε) = δnm

2
2n + 1

,

the recursion equation becomes
√

2n+ 1 ε Pn(ε) = tn
√

2n + 3Pn+1(ε) + tn−1

√
2n − 1Pn−1(ε),

which, multiplying both sides by
√

2n+ 1, is

(2n + 1) ε Pn(ε) = tn
√

(2n + 3)(2n + 1)Pn+1(ε) + tn−1

√
(2n + 1)(2n − 1)Pn−1(ε).

We realize that the above is the recurrence formula for the Legendre polynomials if

tn =
n+ 1√

(2n + 3)(2n + 1)
� 1

2

(
1 +

1
8n2

)
,

which indeed converges soon to 1/2.

Therefore, instead of studying the full model (4.3), one can equally well consider a simple
tight-binding Hamiltonian with constant hopping on a semi-infinite chain. The advantage is
that a lot of powerful techniques are available in one dimension, like Conformal Field Theory,
which we discuss later.
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4.2 The Wilson Numerical Renormalization group

Let us consider again the model with a constant DOS and matrix elements Vε = V . We divide
the energy interval 0 ≤ ε ≤ 1 into sub-intervals I(+)

n , n ≥ 0, defined in the following way

ε ∈ I(+)
n means

1
Λn+1

≤ ε ≤ 1
Λn

,

with Λ > 1. The same is done for −1 ≤ ε ≤ 0, in which case

ε ∈ I(−)
n means − 1

Λn
≤ ε ≤ − 1

Λn+1
.

In other words we have performed a logarithmic mesh of the energies. Let us focus on a single
interval I(+)

n , whose length is
Ln = Λ−n

(
1 − Λ−1

)
.

In this finite interval we can introduce a complete basis of wave-functions in the energy space,
defined as

φ
(+)
n,l (ε) =

√
1
Ln

eiωn l ε,

where
ωn =

2π
Ln

,

and l is an integer. The fermionic operators are

a†n,l =
∫

I
(+)
n

dε φ
(+)
n,l (ε) c†ε. (4.4)

Analogously, within the interval I(−)
n of negative energies, we define the wave-functions

φ
(−)
n,l (ε) =

√
1
Ln

e−iωn l ε,

and the corresponding operators

b†n,l =
∫

I
(−)
n

dε φ
(−)
n,l (ε) c†ε. (4.5)

The conduction electron Hamiltonian in the new basis becomes

H0 =
∫ 1

−1
dε ε c†εcε =

∑
n

∑
ll′

En;ll′

(
a†n,lan,l′ − b†n,lbn,l′

)
, (4.6)
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where

En;ll′ =
∫

I
(+)
n

dε ε φ
(+)
n,l (ε)∗ φ(+)

n,l′ (ε)

=
∫

I
(+)
n

dε (ε− En) φ(+)
n,l (ε)∗ φ(+)

n,l′ (ε) + En δll′

= ΔEn;ll′ + En δll′ .

In the previous formula, if we take En as the average energy within the interval, namely,

En =
1

2Λn

(
1 +

1
Λ

)
, (4.7)

then the off-diagonal matrix elements ΔEn;ll′ vanish in the limit Λ → 1.
The conduction electron operator which is coupled to the impurity becomes in the new basis

f †0 =

√
1
2

∫ 1

−1
dε c†ε =

∑
n

√
Ln

2

(
a†n,0 + b†n,0

)
, (4.8)

namely involves only the l = 0 component within each interval. Therefore, neglecting the off-
diagonal elements ΔEn;ll′, which is rigorously true only for Λ → 1, the l = 0 sector decouples
from the l �= 0, which remains untouched by the impurity, and one needs to solve only the
following Hamiltonian, dropping the label l = 0 and inserting back the spin index,

HAIM =
∑
nσ

En

(
a†nσanσ − b†nσbnσ

)

+V
∑
nσ

√
Ln

2

[(
a†nσ + b†nσ

)
d†σ +H.c.

]
+ Hint

[
d†, d

]
. (4.9)

Starting by this Hamiltonian with a logaritmic discretization of the energy, we can apply the
previously discussed Lanczos algorithm to obtain the tight-binding Hamiltonian

HAIM =
∑
n≥0

∑
σ

tn

(
f †nσfn+1σ +H.c.

)
+ V

∑
σ

(
f †σdσ +H.c.

)
+ Hint

[
d†, d

]
. (4.10)

Wilson showed that the hopping matrix elements have the expression

tn =
1
2
(
1 + Λ−1

)
Λ−n/2 1 − Λ−n−1√

(1 − Λ−2n−3) (1 − Λ−2n−1)
=

1
2
(
1 + Λ−1

)
Λ−n/2 ζn, (4.11)

where ζn fastly approaches 1, so that in the following we take it to be strictly unity. We notice
that, thanks to the logarithmic mesh, the hopping decays exponentially with the chain-length,
unlike the uniform mesh in which the hopping saturates to a constant value.
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Let us define a set of Hamiltonians

HN = Λ(N−1)/2

{
N−1∑
n=0

∑
σ

tn

(
f †nσfn+1σ +H.c.

)
+V

∑
σ

(
f †σdσ +H.c.

)
+Hint

[
d†, d

]}
. (4.12)

The pre-factor has the effect of making the lowest hopping Λ(N−1)/2 tN−1 of order one. Clearly

HAIM = lim
N→∞

Λ−(N−1)/2 HN .

These Hamiltonians satisfy the recursion formula:

HN+1 = Λ1/2 HN +
1
2
(
1 + Λ−1

) ∑
σ

(
f †NσfN+1σ +H.c.

)
. (4.13)

We know that the Kondo temperature is exponentially small at large U/Γ. Therefore, in
order to describe correctly the low temperature physics, one would need to go to an exponentially
small T � TK . In this case, finite-size effects in any physical observable should become negligible
only when the typical level spacing Δ becomes smaller than T . In the uniform mesh, Δ ∼ π/N ,
where N is the chain length, hence we would need an exponentially large size to access the
low temperature properties. On the contrary, thanks to the logarithmic mesh, a chain with
N � ln(1/T )/ ln Λ is already sufficient. However it is practically impossible to diagonalize
completely the Hamiltonian but for the first few N ’s. We notice that, after the rescaling by the
factor Λ1/2, typical Λ being 3÷ 5, the spectrum of HN generally contains a bunch of eigenstates
with eigenvalues ≤ 1, separated by a gap from states with higher energies ≥ 10. The hopping
to site N + 1 will have negligible effects on the high energy states, so that one can truncate
the Hilbert space of the chain with N -site, by keeping only the low energy eigenstates, combine
them with the states of the site N +1 and diagonalize HN+1 in this reduced Hilbert space. This
procedure is iterated to larger chain sizes, until the recursion formula (4.13) flows to a fixed
point Hamiltonian H∗. Indeed (4.13) describes a renormalization group (RG) transformation,
which can be shortly written as

HN+1 = T [HN ] , (4.14)

In reality it is more appropriate to define the RG transformation within chains of the same
parity, namely

HN = T 2 [HN−2] . (4.15)

As N increases the RG transformation flows to a fixed point defined by

H∗ = T 2 [H∗] . (4.16)

By analysing the spectrum of the fixed point one should be able to identify H∗. Once this is
done, one may perturb H∗ → H∗ + δH∗, with δH∗ limited to the first few sites, and by iterating
again the RG procedure, one can determine all scaling operators and their eigenvalues. In most
common cases this programme can be actually carried out, but there are situations in which the
model flows to non trivial fixed points which require a more sophisticated analysis.
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4.2.1 The simplest example: the single-channel Kondo effect

Just as an example, let us discuss how the Numerical Renormalization Group (NRG) works for
a single-orbital AIM in the large-U Kondo-regime. At the beginning it is convenient to consider
the model in the absence of the impurity, which, as we discussed, is equivalent to a tight-binding
model on a semi-infinite chain. At particle-hole symmetry, the number of electrons is equal
to the number of sites. For a finite chain of N sites, the appropriate Block waves with open
boundaries at site r = 1 and r = N are of the form sin kr with

k =
π

N + 1
n,

with n > 0 an integer. The single-particle spectrum near the Fermi energy can be linearized,
leading to

εk � εF + vF k = εF + vF
π

N + 1
n,

and consists of equally spaced levels, with spacing Δ = vFπ/(N + 1). The same property holds
also for the full multi-particle spectrum. Since the number of electrons is equal to the number of
sites, the chains with an even number of sites is obtained by filling with two electrons the lowest
N/2 levels. The ground state is therefore non-degenerate and is followed by equally spaced
excited states. If the number of sites is odd, the ground state is obtained by doubly occupying
the lowest (N − 1)/2 states, and occupying with a single electron the (N + 1)/2 level. Since
this can be done in two different ways, according to the spin of the electron, the ground state
has spin 1/2, namely is doubly degenerate. If, instead of fixing the number of electrons, we
keep the chemical potential fixed such that, on average, the number of electrons is equal to the
number of sites, then, in the case of even chains, the chemical potential lies in the middle of
two consecutive single-particle levels, while, for odd chains, it coincides with a single-particle
level. In the latter case, the ground state turns out to be fourfold degenerate, since there are
four equally probable states available on the level right at the chemical potential, empty, singly
occupied by a spin up electron, singly occupied by a spin down electron, or doubly occupied.

We know that the Kondo effect is identified by a phase shift δσ = π/2 for each spin-channel
σ. By the Friedel’s sum rule the variation of the electron number at fixed chemical potential is

ΔNels =
1
π

(
δ↑ + δ↓

)
= 1.

This implies that the ground state of a chain with N sites has now to accomodate N+1 electrons,
hence that an even chain will eventually develop a fourfold degenerate state, while an odd chain
a non-degenerate one. In other words the NRG flow for even N ,

HN = T 2 [HN−2] , (4.17)

will start from the spectrum of an even chain and flow to the spectrum of an odd chain. Viceversa
for odd N ’s. This flow is the clear signal of a π/2 phase-shift typical of the Kondo effect.
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In conclusion, the fixed point Hamiltonian still describes a tight-binding semi-infinite chain
with equally spaced levels, the impurity being absorbed by the conduction sea into a simple
change of boundary conditions. For what concerns the leading scaling operators, the only
perturbing terms compatible with particle-hole symmetry are a variation of the first hopping
matrix element, t0 → t0 + δt0, and a local interaction term δU f †0↑f

†
0↓f0↓f0↑.

4.3 Conformal Field Theory applied to impurity models

We have previously shown that an impurity model in any dimension is, for what it concerns
the low energy properties, effectively equivalent to a model of electrons hopping with a constant
matrix element on a semi-infinite chain, with the impurity sitting at the edge. We also know
that one-dimensional gapless fermions have very peculiar features. In particular, the continuum
of particle-hole excitations in one-dimension is exhausted by collective acoustic modes, the zero
sounds. This property, which holds even if the electrons are interacting, provided the interaction
does not open a gap in the spectrum, is the basis of the so-called Bosonization technique,
which allows to map the gapless fermionic model into a critical quantum field theory, which
corresponds to a 1 + 1 dimensional Conformal Field Theory (CFT). In reality, if the electrons
are interacting, the proper mapping is into a set of CFT’s that reflect the overall symmetry
of the Hamiltonian, which is generally lower if interaction is present. For instance, in a single
band spin-isotropic model, one has to introduce a CFT that takes care of the charge degrees of
freedom, and a non-abelian CFT to describe the SU(2) spin sector, the well-known spin-charge
separation which occurs in one dimension. This procedure, which is called conformal embedding,
can be rigorously carried out by comparing, in the absence of interaction, the partition functions
in the different representations.

In the specific example of impurity models, the conduction electrons are assumed to be non-
interacting, hence by construction the fermionic model is massless and should be representable
in terms of a CFT. Indeed, since the chain is semi-infinite, it actually maps into a CFT with
an appropriate conformally invariant boundary condition (BC) at the edge. A single impurity
obviously can not induce any bulk gap so that, even in its presence, the model should still
correspond to a CFT with the same number of massless degrees of freedom, namely the same
central charge c. Moreover, the impurity can not even change the sound velocity, in this non
interacting case simply the Fermi velocity, since the latter is also a bulk property. The only
thing that may change are the BC’s, which still have to be conformally invariant. The change
of boundary conditions has two effects. First it modifies the fine structure of the low-energy
spectrum, namely the sequence and degeneracy of levels at finite but long chain-length. In
addition, it may change the scaling properties of boundary operators. Both effects can be
computed exactly by CFT once the new boudary conditions are known, and compared directly
with NRG results.

This procedure encounters two main difficulties. The first is that the actual symmetry in

62



the presence of the impurity is generally lower than the large symmetry of the free conduction
bath. This implies that one has to identify the proper conformal embedding, which in some
cases may not be simple to uncover. The second difficulty is to determine the conformally
invariant BC’s that are compatible with the embedding. This is accomplished by the so-called
fusion hypothesis, according to which conformally invariant BC’s can be obtained by fusing the
spectrum of a known BC with the primary fields, which are the scaling operators of the theory.
By fusion one means the product of two primary fields, which yields a combination of primary
fields according to some specific rules, called fusion rules. In principle, if we were able to classify
all allowed BC’s, by comparing their CFT spectra with the NRG results we could identify which
BC is actually realized.

We do not aim to give here a detailed introduction to CFT, but just want to show in some
non-trivial cases how it works. If readers desire to acquire a deeper knowledge, a useful text-
book is Conformal Field Theory, by P. Di Francesco, P. Mathieu and D. Senechal, hereafter
denoted as DMS book.

4.3.1 Some simple CFT results

We know that the first step of Bosonization in one-dimension is the linearization of the free-
electron spectrum around the Fermi momentum. This linearization is not expected to affect
the low energy behavior provided the perturbations are weak compared to the band-width.
Therefore let us consider, instead of a tight-binding model, free spinless Dirac fermions, which
have indeed a linear spectrum, on a chain of length L with anti-periodic boundary conditions.
We will consider Dirac fermions moving only in one direction, namely with a single chirality,
because this is the case relevant to a semi-infinite chain. Indeed, as we have seen, the wave-
functions with negative momenta of a semi-infinite chain are not indepenendent from those with
positive momenta.

The single-particle wave-functions for a chiral Dirac fermion are plane waves with momentum

k =
π

L
(2n− 1),

with integer n. The Hamiltonian in momentum space reads

H = vF

∑
k

k c†k ck, (4.18)

where vF has to be identified with the Fermi velocity of the original tight-binding model. Let
us define for positive k

ak = ck,

bk = c†−k,
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so that, apart from an actually infinite constant, the Hamiltonian becomes

H = vF

∑
k>0

k
(
a†k ak + b†k bk

)
. (4.19)

The partition function at temperature T is simply

ZDirac =
∏
k>0

[
1 + exp (−β vF k)

]2

=
∏
n≥1

(
1 + qn−1/2

)
, (4.20)

where conventionally q is defined as

q = exp
(
−β 2π

L

)
≡ e2πiτ .

One can show that
ZDirac(q) =

θ3(q)
φ(q)

, (4.21)

where θ3 is the third Jacobi theta-function

θ3(q) =
∞∑

n=−∞
qn2/2,

and φ the Euler function
φ(q) =

∏
n≥1

(1 − qn) .

On the other hand, we know by Bosonization that, if we define for positive p = 2πn/L the
operators

bp = −i
√

2π
pL

ρ(p) = −i
√

2π
pL

∑
k

c†k ck+p, b†p = i

√
2π
pL

ρ(−p),

they satisfy bosonic commutation relations. In addition their equation of motion can be repro-
duced by the Hamiltonian

H =
πvF

L

∑
p

ρ(p) ρ(−p) = vF

∑
p>0

p b†p bp +
πvF

L
ΔN2, (4.22)

where we assumed that ρ(p = 0) is the variation ΔN of the electron number with respect to a
reference value. The partition function of this bosonic model is the product of the bosonic term∏

p>0

[1 − exp (−β vF p)]
−1 =

∏
n>0

(1 − qn)−1 = φ(q)−1
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plus the contribution of the ΔN which is simply, assuming an infinite reference number,

∞∑
n=−∞

exp
(
−β vFπ

L
n2
)

=
∞∑

n=−∞
qn2/2 = θ3(q).

We immediately recognize that the bosonic partition function does coincide with the fermionic
one.

We can proceed further on, and consider spinful Dirac fermions. Obviously the partition
function is the square of ZDirac in Eq. (4.21). However, we would like to consider a perturbation
which only preserves independently the spin SU(2) symmetry and the charge isospin SU(2),
defined through the generators I, which are the q = 0 components of the so-called isospin
current operators

Iz(q) =
1
2

∑
kσ

(
c†kσck+qσ − δq0

)
,

I+(q) =
∑

k

c†k↑ c
†
−k−q↓,

I−(q) =
(
I+
)†
.

The spin SU(2) current operators are instead

S(q) =
1
2

∑
kαβ

c†kα σαβ ck+qβ, (4.23)

where σ are the Pauli matrices. In real space these current operators, Ja = Ia, Sa, satisfy the
commutation relations[

Ja(x), Jb(y)
]

= iεabc δ(x − y)Jc(x) − i k
1
4π

δab
∂δ(x− y)

∂x
,

with k = 1. For generic k ≥ 1, the above commutation relations identify an SU(2)k CFT,
where the label k may be regarded as the number of channels which are used to build up the
generators. In general, an SU(2)k CFT has primary fields φ

(k)
2j with spin quantum numbers j,

such that 2j = 0, 1, . . . , k. Their scaling dimension is xj = j(j + 1)/(k + 2). The product of
two primary fields with spin j and j′ yields all primary fields with spin bewteen |j − j′| and
min(k − j − j′, j + j′). The Hilbert space of the theory is obtained by applying the primary
fields on the reference vacuum state and, from this ancestor state, by generating all descendent
states applying the current operators with q < 0. This is what is called a conformal tower.
The energy difference between the descendent states and their ancestor is an integer multiple of
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the fundamental level spacing. The character χ(k)
2j represents the contribution to the partition

function of the conformal tower generated by the primary field φ
(k)
2j .

This construction may look abstruse but actually has a simple physical interpretation. Let
us consider again a single spinful fermion, k = 1. Let us further assume that on average the
number of electrons is equal to the number of sites, and the latter is even. In this case the
ground state is obtained by filling with two electrons of opposite spin all single-particle states
below the chemical potential, which lies in the middle of two consecutive single-particle levels,
which, we recall, are separated by the fundamental spacing Δ, from now on our energy unit.
With this definition, the Hilbert space can be constructed as follows. One can start from the
vacuum and act on it with particle-hole excitations, namely with Iz(q) or J(q) with q < 0. In
addition one can apply the operators I+(q) or I−(q), again with q < 0, to change by an even
multiple the number of electrons, and then consider all particle-hole excitations on top of these
states. In this way we obtain all states which have even number of electrons, like the vacuum
state. This is nothing but the conformal tower obtained by the ancestor fields χ(1)

0 in both
the charge and spin SU(2)1 sectors, which should contribute to the partition function with the
product of characters

(
χ

(1)
0

)
charge

(
χ

(1)
0

)
spin

.

The rest of the Hilbert space includes all states with odd number of electrons. Since a single
electron carries isospin and spin 1/2, all these states have half-odd integer values of Iz and
Sz. One realizes that all they can be obtained by applying the product of the isospin and spin
primary fields φ(1)

1 charge×φ(1)
1 spin, which is nothing but the single electron operator, and construct

out of it all descendent states. Their contribution to the partition function should then be(
χ

(1)
1

)
charge

(
χ

(1)
1

)
spin

. The expression of the SU(2)k characters, cfr. DMS book page 586, is

χ
(k)
l (q) =

1
η(q)3

∞∑
n=−∞

[
2n (k + 2) + l + 1

]
q(2n(k+2)+l+1)2/4(k+2),

where
η(q) = q1/24 φ(q),

is the Dedekind function. In the specific case of k = 1,

χ
(1)
0 (q) =

√
θ3(q)2 + θ4(q)2

2η(q)2
,

χ
(1)
1 (q) =

√
θ3(q)2 − θ4(q)2

2η(q)2
,

where

θ4(q) =
∞∑

n=−∞
(−1)n qn2/2,
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is the fourth Jacobi theta-function. Hence we find that(
χ

(1)
0

)
charge

(
χ

(1)
0

)
spin

+
(
χ

(1)
1

)
charge

(
χ

(1)
1

)
spin

=
θ3(q)2

η(q)2
= q−1/12 ZDirac(q)2, (4.24)

which, apart from the vacuum polarization contribution q−1/12 is exactly the partition function
of two species of Dirac fermions. The spectrum, and correspongly the partition function, can
be represented as in Table 4.1. In that Table we identify each conformal tower by the quantum

I S x

0 0 0
1/2 1/2 1/2

Table 4.1: The spectrum of spinful electrons when the ground state contains an even number of
particles

numbers of the primary fields which generate the ancestor states. x is energy in units of the
fundamental level spacing Δ of the ancestor state with respect to the chemical potential. The
descendent levels of an ancestor have energies x + n, with n a positive integer. Notice that an
important consequence of conformal invariance is that the energy of each state in units of Δ
coincide with the scaling dimension of the operator which, applied to the vacuum, yields that
state. In particular the single electron excitation has energy x = 1/2, 1/4 from the spin S = 1/2
and 1/4 from the isospin I = 1/2 primary fields, because the chemical potentials lies in the
middle between two consecutive levels.

Following the same reasoning, one can easily show that the table of the energy spectrum in
the case of odd chains at half-filling is the one of Table 4.2. As discussed before the ground state

I S x− 1/4
1/2 0 0
0 1/2 0

Table 4.2: The spectrum of spinful electrons when the ground state contains an odd number of
particles

is indeed fourfold degenerate, the chemical potential coinciding with a single-particle level.
Following the fusion hypothesis, the Kondo fixed point should be obtained by fusing the

spectrum in the absence of the impurity with a primary field of the embedded theory. Since, in
the large U -limit, the Kondo exchange only involves the spin SU(2)1 degrees of freedom, and
since, apart from the identity S = 0, the only primary field has S = 1/2, we would predict
that, upon fusion with the latter, the Kondo fixed point should be reproduced. This is actually
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the case. Indeed, if we fuse the spectrum of even chains with the spin field φ
(1)
1 we do get the

spectrum of odd chains, and viceversa. CFT also tells us that, in order to identify the local
scaling operators, we have to double fuse the starting spectrum. Each row of the resulting
table corresponds to a local scaling operator, whose dimension is the sum of the dimensions of
each primary field involved. Descendent operators have dimensions which increase by unity. An
operator is relevant if its dimension is < 1, marginal if it is exactly 1, and irrelevant otherwise. In
the single-channel example, if, for instance, we double fuse the even chain spectrum, we obtain it
back. This implies that the lowest dimension operators allowed by symmetry are scalar products
of current operators with dimension 2, hence they are irrelevant.

The two channel model

Since it will be important for what follows, let us conclude by considering the case of two channels
of spinful fermions. The partition function is the square of the partition function (4.24) of a
single channel, and can be written for even chains as

Z =
∑

n1,n2=0,1

(
χ(1)

n1
χ(1)

n2

)
charge

(
χ(1)

n1
χ(1)

n2

)
spin

, (4.25)

where n1 refers to channel 1 and n2 to channel 2. For odd chains one readily finds that

Z =
∑

n1,n2=0,1

(
χ(1)

n1
χ(1)

n2

)
charge

(
χ

(1)
1−n1

χ
(1)
1−n2

)
spin

. (4.26)

These expressions manifestly show that the free two-channel conduction electrons are invariant
under independently spin or isospin SU(2) transformations for each channel, namely under a
large symmetry SU(2) × SU(2) × SU(2) × SU(2).

Let us suppose that the impurity couples only to the spin-current operators in such a way
that only the overall SU(2) symmetry is preserved. Therefore, while the charge degrees of
freedom can still be represented by two SU(2)1 CFT’s, the appropriate confomal embedding for
the spin sectors should involve an SU(2)2 CFT, since the total spin current is made up of two
channels, times the coset CFT, namely

SU(2)1 × SU(2)1 → SU(2)2 × SU(2)1 × SU(2)1
SU(2)2

.

Since the central charge is conserved and each SU(2)k has a central charge 3k/(k+2), the coset
theory should have c = 1/2, namely the central charge of an Ising CFT. This can be proved
rigorously by the character decomposition.

The Ising CFT has three primary fields, the identity I, with dimension 0, the energy field ε,
with dimension 1/2, and the spin field σ with dimension 1/16. The fusion rules are, see DMS
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book,
I × I = I, ε× ε = ε, σ × σ = I + ε, I × ε = ε, I × σ = σ, ε× σ = σ.

The characters χI
x, where x is the dimension of the primary field, are explicitly given by (all

functions are assumed to depend on the variable q, even when not indicated)

χI
0 =

1
2

[√
θ3
η

+

√
θ4
η

]
,

χI
1/2 =

1
2

[√
θ3
η

−
√
θ4
η

]
,

χI
1/16 =

√
1
2

√
θ2
η
,

where the second Jaboi function is defined by

θ2 =
∞∑

n=−∞
q(n−1/2)2/2.

One can show that the product of characters of two SU(2)1 CFTs, χ(1)
2j χ

(1)
2j′ , can be related

to the product of characters of an SU(2)2 and an Ising CFTs, χ(2)
2l χ

I
x, by

χ
(1)
0 χ

(1)
0 = χ

(2)
0 χI

0 + χ
(2)
2 χI

1/2,

χ
(1)
0 χ

(1)
1 = χ

(1)
1 χ

(1)
0 = χ

(2)
1 χI

1/16,

χ
(1)
1 χ

(1)
1 = χ

(2)
0 χI

1/2 + χ
(2)
2 χI

0.

By means of the above decomposition one can write the tables of the spectra for even and odd
chains, as given in Table 4.3. By these tables we can easily realize the spectrum of even chains
can be turned into that of odd chains, and viceversa, either by fusion with the SU(2)2 primary
field of spin 1, or by fusion with the Ising field ε.
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I1 I2 S Ising x

0 0 0 0 0
0 0 1 1/2 1
1 0 1/2 1/16 1/2
0 1 1/2 1/16 1/2
1 1 0 1/2 1
1 1 1 0 1

I1 I2 S Ising x− 1/2
0 0 0 1/2 0
0 0 1 0 0
1 0 1/2 1/16 0
0 1 1/2 1/16 0
1 1 0 0 0
1 1 1 1/2 1

Table 4.3: The spectra of two channels on even chains, right table, and odd chains, left table.
I1 and 2 are the values of the isospins of each channel, S the value of the total spin and Ising
refers to the Ising primary fields.

70



Chapter 5

The fate of the Kondo effect in
impurity clusters and speculations
on cluster DMFT

In the previous sections we have discussed quite in detail the physics of a single-orbital Anderson
impurity model in connection with DMFT. We have seen that already the simple single-site
formulation of DMFT provides interesting results about the Mott transition. Most notably,
we have shown that DMFT predicts this transition to occur by the gradual narrowing and
disappearing of a quasiparticle peak within well preformed Mott-Hubbard side-bands. This
behavior implies for instance that the effective impurity model used to solve the lattice problem
is well inside the Kondo regime before the MIT, with a Kondo temperature approaching zero
right at the transition.

As we discussed in the Introduction, we expect that new physics emerges when we move
to cluster DMFT in order to account for short-range spatial correlations. How does this new
physics translates in the corresponding impurity clusters? In the case of the single-site DMFT all
the physics was exhausted by knowing whether, after self-consistency, in the effective impurity
model Kondo effect takes place or does not. If the self-consistent hybridization function is finite
around the chemical potential, the impurity is Kondo-screened, which translates into a Landau-
Fermi liquid behavior of the lattice model. On the contrary, if the self-consistent hybridization
function develops a gap at the chemical potential, the impurity stays unscreened and the lattice
model is insulating. However, an insulator with unscreened local moments is a poor description
of a Mott insulator, which may be appropriate only at high temperature. At low temperature,
inter-site exchange processes come always into play and provide a screening mechanism within
the insulating phase. These processes are not well described within the single-site DMFT, which
motivates its extension to cluster-DMFT.

Let us consider therefore a typical cluster of impurities that would represent a lattice model
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within cluster-DMFT. Each impurity, besides being hybridized with the conduction bath, is also
coupled to the other impurities, generally by a single-particle hopping. Since we still expect
the Mott transition to occur when the impurities are well inside the Kondo regime, we can
equally well consider a cluster of impurity-spins that are Kondo coupled by an exhange JK to
a conduction bath and, in addition, coupled among themselves by an exchange J , generally
antiferromagnetic. In this situation new possibilities arise. If JK � J , conventional Kondo
screening occurs and the lattice model should be metallic with well defined Landau’s quasiparti-
cles. On the contrary, if J � JK , the impurities strongly bound together into an overall singlet
configuration, if their number is even, in which case no Kondo screening is needed anymore, or,
if their number is odd, into a spin-1/2 configuration, in which case a partial Kondo screening
can still take place. We will argue that, in both situations, the impurity behavior is not at all
trivial. For instance, the impurity spectral function contains, besides the Hubbard side-bands, a
low energy incoherent feature which displays either a deep or a singularity right at the chemical
potential. When full self-consistency is carried out, two possibilities may arise. The first and
boring one is that the insulating phase occupies the whole J > JK region. This would mean
that the incoherent feature is not self-consistent in the DMFT scheme and would likely imply a
first order phase transition from the metal to the Mott insulator. The second and more intrigu-
ing scenario is that the incoherent feature survives DMFT self-consistency, leading to a strange
metallic behavior near the MIT. If this were the case, then we should also expect a transition in
the metallic phase from a conventional Fermi-liquid metal, at JK � J , into a less conventional
metal at J � JK .

One may immediately realize that this is the impurity analogue of what we discussed in the
Introduction about a realistic MIT. Actually, the competition we envisaged between the effective
quasiparticle Fermi temperature T ∗

F and the energy scale J , that identifies the strength of the
terms which quench the residual entropy of the ideal Mott insulator, has its counterpart into
the competition between the Kondo temperature and the inter-impurity exchange in impurity
clusters. Indeed, the Kondo energy gain is related to the impurity coherently tunneling among
all degenerate configurations, and it is greater the more degenerate the impurity ground state
is. The inter-impurity exchange instead splits this degeneracy, hence competes against Kondo
screening. It turns out that this competition may lead to an unstable fixed point, which separates
the Kondo screened phase from the unscreened one. The occurrence of this critical point might
actually be the signal that, within cluster-DMFT, the Fermi-liquid metal does encounter an
instability before the MIT takes place, as we discussed previously.

Let us speculate a bit more on this hypothesis. Let us suppose, as we will demonstrate in
several examples, that, in an impurity cluster, the Kondo screened phase is indeed separated
from the unscreened one by an unstable fixed point. The latter will be necessarily characterized
by several instability channels, namely by several relevant operators of dimension smaller than
one. In turns, this would correspond to singular, if the dimension is smaller than 1/2, or
otherwise strongly enhanced impurity contribution to the susceptibilities in the corresponding
channels, which also means strongly enhanced irreducible vertices at the impurity site. As we
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have learned, the lattice irreducible vertices in DMFT are local and coincide with the impurity
ones. Therefore, if these vertices are inserted into the Bethe-Salpeter equation for the lattice
susceptibilities, it is reasonable to expect that the impurity instability will turn into a true bulk
instability of the lattice model, leading to a symmetry breaking in the dominant channel. This is
the channel in which the enhanced irreducible vertex and the Green’s function bubble cooperate
at most to a bulk instability. Obviously, this instability will affect a whole region around the
impurity unstable fixed point, leading to a symmetry broken phase before the MIT takes place.
In most cases, however, the cluster of impurities contains by construction small terms which are
nevertheless relevant at the unstable fixed point. As a result, the phase transition through the
unstable fixed point would turn into a crossover. Yet, if this crossover is sharp, we should still
expect that an instability arises when DMFT self-consistency is carried out.

At this stage what we have discussed so far is merely a conjecture but at least suggests that,
just like in the single-site DMFT, the knowledge of the physical behavior of impurity clusters
per se might be of great help to interpret cluster-DMFT results.

5.1 The impurity dimer

The first and simpler impurity cluster that one can discuss is a dimer. In particular we consider
the Hamiltonian

H =
∑
kσ

2∑
a=1

εk c
†
k aσck aσ +

∑
kσ

2∑
a=1

(
Vk c

†
k aσdaσ +H.c.

)

+
U

2

2∑
a=1

(na − 1)2 + V (n1 − 1) (n2 − 1) + J S1 · S2. (5.1)

In this expression

na =
∑

σ

d†aσdaσ, Sa =
1
2

∑
αβ

d†aα σαβ daβ ,

where σ are the Pauli matrices. The Hamiltonian describes two impurities, each one hybridized
with its own bath, and coupled together by a charge repulsion term V > 0 and by an antiferro-
magnetic exchange J > 0. For simplicity we assume the two conduction baths degenerate and
particle-hole symmetric. This implies that both the orbital and the particle-hole symmetries
remain, even in the presence of the impurities.

5.1.1 The isolated impurities

Let us start by considering the case of an isolated dimer, i.e. Vk = 0. As we will assume always
a large U , the ground state of the two impurities in the absence of hybridization lies in the
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two-electron sector, which contains six states. It is convenient to introduce pseudo-spin-1/2
operators even in the orbital sector, so that

Tz =
1
2

∑
σ

(n1 − n2) , T+ =
∑
σ

d†1σd2σ, T− =
∑

σ

d†2σd1σ .

Among the six two-particle states, there is a spin-triplet with quantum numbers S = 1 and
T = 0, and energy

E(S = 1, T = 0) = V +
J

4
.

The other three states are spin-singlets but form an orbital-triplet, T = 1. In particular the
states with different Tz = −1, 0, 1 are

|Tz = −1〉 = d†2↑d
†
2↓ |0〉,

|Tz = 0〉 =

√
1
2

(
d†1↑d

†
2↓ + d†2↑d

†
1↓
)
|0〉,

|Tz = +1〉 = d†1↑d
†
1↓ |0〉.

However the interaction lowers the pseudo-spin SU(2) down to O(2), so that the two states with
T = 1 but Tz = ±1 are still degenerate, with energy

E(S = 0, T = 1, Tz = ±1) = U,

but the state with Tz = 0 has a different energy

E(S = 0, T = 1, Tz = 0) = V − 3
4
J.

Provided V < U+3J/4, which is a reasonable assumption, the lowest energy state of the isolated
dimer is the spin-singlet with Tz = 0, namely the intersite singlet. The next lowest energy state
will the doublet of singlets if V > U − J/4, and the spin-triplet otherwise.

Since an incoming pair of electrons has the same quantum numbers of the two electron states,
we can define by symmetry three particle-particle scattering vertices, in the triplet channel, Γ1,
in the singlet channels with Tz = ±1, Γ0±, and finally in the singlet channel with Tz = 0, Γ0

0.
Their bare values are

Γ1 = V + 1
4 J,

Γ0± = U,
Γ0

0 = V − 3
4 J.

(5.2)

Notice that the bare Γ0
0 is attractive only if V < 3J/4.
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5.1.2 The breakdown of perturbation theory

In the opposite limit of very weak U , J and V , one can do perturbation theory on the non-
interacting state, which simply represents two uncoupled resonant level models. As we know,
each bath acquires a phase shift π/2 per spin. Moreover we also know that, at weak coupling,
this result does not change. Rather, we have shown that, provided perturbation theory does
not break down, the π/2 phase shift persists up to U → ∞ in the model with particle-hole
symmetry. However, as U increases, the width of the resonance, which is also the Kondo
temperature, diminishes and becomes exponentially small for large U . The question is whether
perturbation theory actually works for any U or it breaks down at same critical value.

We notice that, if TK becomes much smaller then the energy gap which separates the ground
state of the dimer from the first excited one, the impurities lock into the Tz = 0 spin-singlet state.
Since this state is non-degenerate, the dimer becomes invisible to the conduction electrons, no
Kondo effect is needed anymore. This implies that for very large U , when TK is very small, the
actual phase shift of the conduction channels should be δ = 0. This immediately suggests that
something has to occur as U increases. In particular, since δ = π/2 and δ = 0 are the only values
compatible with particle-hole symmetry, the two extreme cases can not be joined continuously.
In other words, a critical point should separate the δ = π/2 Kondo screened phase from the
δ = 0 unscreened one. Before presenting the NRG plus CFT results, let us use the results of
the previous sections to show that this breakdown is actually dramatic for what concerns the
impurity.

We have shown that the conduction electron phase shift is given by

δ(ε) = 
m ln G(ε+ i0+), (5.3)

where
G(iεn)−1 = iεn + iΓ sign(εn) − Σ(iεn), (5.4)

is the impurity Green’s function. If we denote as

Σ′(ε) = �eG(ε+ i0+), Σ′′(ε) = −
mG(ε+ i0+),

then

δ(ε) = − tan−1

(
Γ + Σ′′(ε)
ε− Σ′(ε)

)
. (5.5)

It is clear from this expression that the only way to obtain a δ(ε → 0) = 0 is through a
Σ′(ε → 0) → −∞. This shows that a phase-shift δ = 0 is not at all innocuous for the impurity
self-energy, whose real part diverges at the chemical potential. Moreover, since the local Landau-
Fermi liquid picture should still hold even if δ = 0, simply because the impurity dimer has
disappeared at low energy, we should expect that δ(ε) ∼ ε, which implies that Σ′(ε) ∼ 1/ε.
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Finally we notice that the impurity DOS

ρ(ε) =
1
π

Γ + Σ′′(ε)[
ε− Σ′(ε)

]2 +
[
Γ + Σ′′(ε)

]2 ∼ ε2, (5.6)

namely it vanishes quadratically at the chemical potential. Therefore, moving from δ = π/2 to
δ → 0, the impurity DOS goes from a Kondo-resonance behavior into a pseudo-gapped one.

5.1.3 The dimer phase diagram

The impurity model (5.1) at V = 0 was originally studied using NRG by B. Jones and C. Varma
in the late 80’s. Their results were later interpreted with CFT by I. Affleck and A. Ludwig.
The same model but with V = U was studied with NRG by myself and L. De Leo. Indeed,
irrespectively of the value of V , provided the lowest energy state is the Tz = 0 singlet, the phase
diagram remains the same, and is sketched in Fig. 5.1. As expected there are two stable phases,

unstable
fixed point

phase

0
U / V

J / U = constant << 1

Kondo screened
phase

Kondo unscreened 

Figure 5.1: Phase diagram of (5.1) as function of U

one Kondo screened below a critical U , and one unscreened above, separated by an unstable
fixed point.

CFT analysis

Affleck and Ludwig realized that the NRG spectrum of this fixed point can be reproduced
within CFT by fusion of the spectra in Table 4.3 with the Ising primary field σ of dimension
1/16. The outcome of this fusion is shown in Table 5.1. In the same Table we also list the
scaling operators and their dimensions Δ. Apart from the identity, the only operator allowed by
symmetry is the second, (I1, I2, S, Ising) = (0, 0, 0, ε), with dimension 1/2. This is the operator
which moves away from the fixed point. For instance, if at fixed J the transition occurs when
TK = T ∗

K , then a change δ J will move away from the fixed point and introduce an energy scale
T− ∼ (δ J)1/(1−Δ) = (δ J)2. In order to identify the other relevant operators, we notice that, if
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I1 I2 S Ising x− 1/16
0 0 0 1/16 0
1 0 1/2 0 3/8
0 1 1/2 0 3/8
0 0 1 1/16 1/2
1 1 0 1/16 1/2
1 0 1/2 1/2 7/8
0 1 1/2 1/2 7/8
1 1 1 1/16 1

I1 I2 S Ising Δ
0 0 0 0 0
0 0 0 1/2 1/2
0 0 1 0 1/2
1 1 0 0 1/2
1 0 1/2 1/16 1/2
0 1 1/2 1/16 1/2
0 0 1 1/2 1
1 1 0 1/2 1
1 1 1 0 1
1 1 1 1/2 3/2

Table 5.1: Left: Spectrum at the unstable fixed point of the model (5.1). Right: Scaling
operators with their dimension Δ.

Sa(x) are the current operators of each channel, then S(x) = S1(x)+S2(x) is the current of the
SU(2)2 CFT, and

M(x) = S1(x) − S2(x) ∼ φ
(2)
2 ε, (5.7)

as can be easily understood by checking that both sides have the same dimension 1. This is the
third operator in the table. Since it carries spin and is odd under 1 ↔ 2, it can not appear in
the theory, not only it but also all descendents. Notice that this operator is nothing but the
staggered magnetization.

The fourth operator has also dimension 1/2. It is a spin singlet with I1 = I2 = 1, hence
includes both an hopping term among the baths, equivalently among the impurities, namely

T =
∑
σ

eiφ d†1σd2σ +H.c., (5.8)

and the particle-particle singlet operator

ΔSC = eiφ
(
d†1↑d

†
2↓ + d†2↑d

†
1↓
)

+H.c.. (5.9)

Again this operator is forbidden by the O(2) orbital symmetry or by particle conservation,
hence nor it neither its descendents can appear. The other dimension-1/2 operators correspond
to single particle excitation, which does not conserve charge. All the others are marginal or
irrelevant.

The relevant operators M, T and ΔSC have a diverging susceptibility

χ(T ) ∼ 1
TK

ln
(
TK

T

)
.
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Away from the fixed point this singularity is cut-off by T−.
Additional informations can be gained through the so-called modular S-matrix, which is

formally defined as follows. If q = exp(2 i π τ) and q̃ = exp(2 i π/τ), then the characters χx,
where x label primary fields, satisfy

χx(q̃) =
∑

y

Sy
x χy(q). (5.10)

The matrix elements Sy
x identify the unitary modular S-matrix, which is in general real. Suppose

we start from a spectrum in which the ground state belongs to a conformal tower identified by
the identity I, and assume that the actual boundary conditions are obtained by fusion with
a primary field A. It has been shown in the context of boundary CFT that the ground state
degeneracy gA and residual entropy SA with the new boundary conditions are

gA =
SI

A

SI
I

, SA = ln gA. (5.11)

Next, suppose we want to calculate in the semi-infinite chain the correlation function between
an incoming and an outgoing operator, say a primary field B. This correlation function will
have obviously the same asymptotic behavior in the new boundary A as in the reference one I.
What changes is an overall prefactor, which is the scattering S-matrix SB(A|I) of the primary
field B. It turns out that

SB(A|I) =
SB

A

SI
A

SI
I

SB
I

. (5.12)

In particular, if B is the primary field which enters the decomposition of the single-particle
operator, in the two-channel example is the Ising field σ, then the scattering matrix corresponds
to the single-particle S-matrix at zero frequency.

In the case under study, the fixed point is obtained by fusion in the Ising sector whose
modular S-matrix is, using the convention that it acts on the vector (I, ε, σ), see DMS book
page 363,

S =
1
2

⎛⎝ 1 1
√

2
1 −1 −√

2√
2 −√

2 0

⎞⎠ .

One readily finds that the fixed point has a residual entropy ln
√

2 and a vanishing single-particle
S-matrix

S(0) =
Sσ

σ

Sσ
0

S0
0

Sσ
0

= 0. (5.13)

In turns this implies, from the relation

S(0) = 1 − 2
ρ(0)
ρ0(0)

,
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that the impurity DOS at the chemical potential is exactly half of its value in the Kondo screened
phase.
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Figure 5.2: Impurity DOS across the unstable fixed point. In the top panel two DOS are shown
on the full energy range, with well visible Hubbard-side bands. The bottom panel is a zoom of
the low energy part.

NRG results

It is clear that NRG is essential as input of any CFT analysis. In addition NRG provides
dynamical informations which are not accessible to CFT, as for instance the whole energy
dependence of the impurity spectral function. In Fig. 5.2 we show the DOS of the impurity
across the fixed point of the model (5.1) with V = U . In the top panel of that Figure we
draw the DOSs well inside the Kondo screened phase and the unscreened one on a large energy
range, where the Hubbard-side bands are well visible. We notice the Kondo resonance in the
screened regime as well as the narrow pseudo-gap in the unscreened one. Yet, in the unscreened
regime, even if pseudo-gaped, the DOS has spectral weight within the Hubbard side-bands. In
the bottom panel, the low energy part is shown across the fixed point. The DOS has two main
features. There is a broad resonance which is smooth across the transition. On top of that, in
the screened phase there is a narrower peak which shrinks and vanishes at the transition, where
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only the broad resonance survives. Above the transition, in the unscreened phase, the narrow
resonance turns into a narrow pseudogap within the broad resonance. Since we know, and it is
also confirmed by NRG, that the fixed-point DOS at the chemical potential is half of its value
in the Kondo regime, we guessed the following ansatz for the low-energy DOS:

ρ±(ε) =
ρ0

2

(
T 2

+

ε2 + T 2
+

± T 2−
ε2 + T 2−

)
, (5.14)

where ρ0 = 1/(πΓ) is the DOS of the resonant level model in the absence of interaction, and the
+ refers to the screened phase and the − to the unscreened one. T+ is the width of the broad
resonance, while T− is that one of the narrow resonance which turns into a narrow pseudogap.
T− has to be identified as the energy scale which controls the deviations δJ from the fixed point,
namely T− ∼ (δJ)2. The model DOS (5.14) has all features we need. At the chemical potential
is equal to the non-interacting value ρ0 in the screened phase, is half of it at the fixed point,
and vanishes quadratically in the unscreened regime. The model DOS (5.14) corresponds to a
model Green’s function at low energy

G(iε) =
1
2Γ

(
T+

i ε+ i T+ sign(ε)
+

T−
i ε+ i T− sign(ε)

)
, (5.15)

as well as to a model self-energy

Σ(iε) = G0(iε)−1 − G(iε)−1 = iε+ iΓ sign(ε) − G(iε)−1. (5.16)

If we use (5.16) to fit the actual NRG results, we find an excellent agreement with the fitting
parameters T+ and T− shown in Fig. 5.3. Indeed T+ is smooth across the transition, and can
be identified as the fixed point value of J = J∗, while T− vanishes quadratically, in accordance
with CFT.

In Fig. 5.4 we draw the impurity self-energy 
mΣ(iε), which is purely imaginary in Mat-
subara frequencies because of particle-hole symmetry, as function of ε in the screened phase, at
the fixed point and in the unscreened regime. In the Kondo screened phase

Σ(iε) ∼ iε

(
1 − 1

Z

)
,

with
Z =

2
Γ

T+ T−
T+ + T−

, (5.17)

in accordance with perturbation theory. Notice that the non-interacting limit corresponds to
T+ = T− = Γ. As the fixed point is approached, T− → 0 and Z → 0, too. At the fixed point
the self-energy is finite at zero frequency

Σ(iε→ 0) = −iΓ,
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Figure 5.3: Fit values of T+ and T− across the fixed point.

like the self-energy of a disordered metal. Finally, in the unscreened phase

Σ(iε) ∼ −i 2Γ
ε

T+ T−
T+ − T−

.

Although the impurity self-energy in the unscreened phase is singular, yet the phase should
be describable in terms of a local Fermi liquid theory. Indeed the quasiparticle DOS as given by
Eq. (C.14) is perfectly finite even in the unscreened phase

ρ∗a =
∫ ∞

−∞

dε

π

∂f(ε)
∂ε


m
{
Ga(ε+iδ)

[
1−
(
∂Δa(iε)
∂iε

)
iε→ε+iδ

−
(
∂Σa(iε)
∂iε

)
iε→ε+iδ

]}
=

1
π

(
1
T+

+
1
T−

)
,

(5.18)
since the singularity of the self-energy is compensated by the vanishing DOS. This allows to define
an effective Z = ρ0/ρ∗, eventhough, strictly speaking, Z is not determined in the unscreened
phase. Notice that ρ∗, defined as above, diverges at the fixed point, implying that a local Fermi
liquid description is not possible there.

However, since in the stable screened and unscreened phase a Fermi liquid description is
legittimate, one can extract the Landau parameters discussed in C. This is done by calculating
with NRG the Wilson ratios of the three conserved quantities, namely the charge (C), the
spin (S) and the total Tz (Tz), and, through (C.25) one obtains the Landau parameters in the
corresponding particle-hole channels, AC , AS and ATz , respectively. These in turns are related
to the scattering amplitudes in the particle-particle channels,

A1 = Z2 ρ∗ Γ1, A0
± = Z2 ρ∗ Γ0

±, A0
0 = Z2 ρ∗ Γ0

0,
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Figure 5.4: Behavior of the self-energy in the different phases.

through

AC =
1
4

(
6A1 + 4A0

± + 2A0
0

)
,

AS =
1
4

(
2A1 − 4A0

± − 2A0
0

)
,

ATz =
1
4

(
− 6A1 + 4A0

± − 2A0
0

)
.

Since the parameters on the left hand side are known by NRG, one can determine the the
scattering amplitudes in the particle-particle channels. In Fig. 5.5 these amplitudes are drawn
for the model (5.1) with V = U and both J positive and negative. Notice that, approaching the
fixed point from both sides of the transition, A0

0 → −3, even though its bare value, see Eq. (5.2),
is ρ0 (U − 3J/4) � 0 since in that calculation U/J = 2 × 102 and ρ0 U = 6. In other words,
approaching the fixed point the scattering amplitude in the S = 0 Tz = 0 Cooper channel from
repulsive turns strongly attractive.
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Figure 5.5: Scattering amplitudes in the particle-particle channels.

5.1.4 The phase diagram away from particle-hole symmetry

One may realize that to conjecture the existence of the fixed point we used crucially the particle-
hole symmetry to exclude a continuous cross-over from δ = π/2 to δ = 0. On the other hand,
CFT predicts that ordinary particle-hole symmetry breaking is not a relevant perturbation,
hence that the fixed point should survive even when it is broken. In the model (5.1) with
V = U , we included particle-hole symmetry breaking by

U

2

2∑
a=1

(na − 1)2 + V (n1 − 1) (n2 − 1) =
U

2

(
n1 + n2 − 2

)2

→ U

2

(
n1 + n2 − 2 + ν

)2

.

The role of ν > 0 is to lower the average occupancy of the impurity below 2. However, even in the
presence of this perturbation, we still find the same unstable fixed point. The phase diagram as
function of J and the average impurity occupancy n, with all other parameters fixed, is sketched
in Fig 5.6. The critical line which separates the two stable phases moves at larger J ’s as we
move away from particle-hole symmetry, and, for n → 1, merges into a mixed-valence critical
point which occurs when J � U . The behavior of the DOS across the transition moving the
parameter ν is also shown in Fig 5.6. We notice that, as soon as we move away from particle-hole
symmetry, the pseudo-gap becomes asymmetric and is gradually filled until, above a critical ν,
it turns into a Kondo resonance.
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Figure 5.6: Left panel: the phase diagram of the model (5.1) with V = U as function of the
average impurity occupancy. Right panel: the impurity DOS along the path drawn in the phase
diagram.

The NRG spectrum shows that across the transition there is still a π/2 jump of the phase
shifts, even though on both phases the phase shift is in between 0 and π/2. Namely, if we assume
in the unscreened phase a phase shift δ−, in the screened phase δ+ = π/2 + δ−. In addition we
know that the scattering S-matrix is

�eS± = cos 2δ± = 1 − 2
ρ±
ρ0
,

from which we obtain
ρ+ − ρ− = ρ0 cos 2δ−.

From the definition of the phase-shifts in terms of the Green’s function, we guessed a model
DOS

ρ±(ε) =
ρ0

2

[
T 2

+ + μ2
±

(ε+ μ±)2 + T 2
+

± cos 2δ−
T 2
−

ε2 + T 2
−

]
, (5.19)

with μ± = ±T+ sin 2δ− which fits well the numerical results. We notice from (5.19) that the
second lorentian is always pinned at the chemical potential, so that the filling of the pseudo-gap
occurs because the broad resonance is not anymore symmetric.
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Figure 5.7: Left panels: diagonal self-energy on different energy ranges. Right panels: off-
diagonal self-energy.

5.1.5 A more realistic dimer model

We have seen that the unstable fixed point of the dimer model (5.1) is destabilized by a direct
hopping between the two impuritites. This is however the most realistic situation, and would
actually correspond to the impurity model onto which for instance an Hubbard model should
be mapped within cluster DMFT. Therefore one may wander how much of the critical behavior
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is left if, instead of (5.1) we considered the impurity model

H =
∑
kσ

2∑
a=1

εk c
†
k aσck aσ +

∑
kσ

2∑
a=1

(
Vk c

†
k aσdaσ +H.c.

)

+
U

2

2∑
a=1

(na − 1)2 − t
∑
σ

(
d†1σd2σ +H.c.

)
. (5.20)

As we have mentioned several times, the approach to the Mott transition corresponds to an
impurity model deep inside the Kondo regime, namely with U � Vk, t. In this limit, (5.20)
can be mapped by a Schrieffer-Wolff transformation onto the Kondo limit of (5.1), with V = 0.
The Kondo exchange JK is the same in both models, the impurity exchange is J = 4t2⊥/U ,
However, at next order in 1/U , a local direct hybridization Vx among the baths is generated,
with Vx ∼ Jkt⊥/U . Although small, Vx is a relevant perturbation which makes the unstable
fixed point of model (5.1) unaccessible in model (5.20). Yet, since J � Vx, one may expect that
a quantum critical region, but not a true quantum critical point, is still well visible.

This is indeed the case. Notice that, in the presence of the hopping, the impurity self-energy
has a diagonal part, Σ11 = Σ22, which we find is purely imaginary in Matsubara frequencies,
and an off diagonal one, Σ12 = Σ∗

21, which turns out to be real. In Fig. 5.7 we draw the impurity
self energy Σ(iε) as function of ε with U = 8, t = 0.05, hence J = 1.25× 10−3, and Γ = 0.5÷ 0.3
from the top curve to the bottom one, namely JK = 0.08÷ 0.05, in units of half the conduction
bandwidth. There are several interesting things to notice. The first is that a quite sharp cross-
over from an “unscreened” phase, with a large 
mΣ11 to a “screened” one, with a small 
mΣ11,
is visible. However, even if in the “unscreened” phase the 
mΣ11 seems to be diverging coming
from high energy, at very low energy it upturns into a conventional Fermi-liquid behavior, with

mΣ11 ∝ −ε, although with a very large slope. Also interesting is the behavior of �eΣ12.
Indeed, in spite of the fact that the off-diagonal term introduced in the Hamiltonian, t = 0.05,
is very small, the off-diagonal self-energy becomes very large at small energy, so to compensate
the big slope of the diagonal one, inversely proportional to Z. This behavior indicates that,
although the fixed point is not accessible, still the cross-over between the two extreme regimes
is sharp. This is further confirmed by the plot of the diagonal DOS in the same range of Γ’s,
shown in Fig 5.8. We see that the DOS moves from a Kondo-like behavior into a pseudo-gaped
one quite sharply.

5.2 The dimer model versus DMFT

In summary, we have shown that a dimer of Anderson impurities includes generally two regimes.
One is dominated by the Kondo effect, while in the other the inter-impurity coupling prevails.
Consequently, in the former the impurity DOS have a Kondo resonance, but in the latter the
DOS have a deep or even a pseudo-gap. In the highly symmetric model (5.1), which possesses
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Figure 5.8: Diagonal component of the DOS.

an orbital O(2) symmetry, these two regimes are separated by a true critical point. Right at the
critical point there are singular susceptibilities in three relevant channels, namely the staggered
magnetization, Eq. (5.9), the channel hybridization, Eq. (5.8), and the inter-channel single
Cooper pair, see Eq. (5.7). In the more realistic model (5.20), which inludes by construction the
relevant interchannel hybridization, the two extreme regimes are separated by a crossover, which
however turns out to be quite sharp. This suggests that, although none of the above mentioned
susceptibilities ever diverges, yet there should be a finite region where they are strongly enhanced,
manifestation of the avoided criticality. Can we make any prediction out of these results about
a lattice model which maps by DMFT just on the same class of impurity dimers.

Let us just concentrate on a lattice model which has been actually worked out by DMFT,
and corresponds to the lattice generalization of (5.1) with U = V , namely with an Hamiltonian

H = −t
∑

<RR′> σ

2∑
a=1

(
c†Raσc

†
R′ aσ +H.c.

)
+
U

2

∑
R

(nR − 2)2 + J
∑
R

SR 1 · SR 2, (5.21)

which describes a two-band Hubbard model with an inverted exchange splitting favoring an inter-
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orbital singlet state on each site. Within the original single-site DMFT, (5.21) maps onto (5.1),
which we know has the right symmetry to encounter the unstable fixed point. The behavior of
the Kondo temperature of the impurity after DMFT self-consistency has been carried out can be
depicted as in Fig. 5.9. At half-filling, TK is decreasing with U until, at a critical value, it should

J

KTK

U δ

J

T

Figure 5.9: Behavior of the DMFT self-consistent Kondo temperature as compared to the in-
verted exchange J

vanish, signalling the Mott transition. However, before that happens, TK necessarily becomes of
order J which corresponds to the location of the impurity critical point. Analogously, if we start
at half-filling from the Mott insulator and dope it, TK from its insulating value TK = 0, will
gradually increase with doping, until, at a critical doping, it will cross the value TK � J of the
critical point, which we know can be crossed also varying the impurity average occupancy. In
both cases, the impurity model encounters its critical point before the MIT, and, from what we
previously mentioned, one should expect, around this point, a region with symmetry breaking
within one of the instability channels of the impurity. The staggered magnetization (5.7) would
likely correspond to an antiferromagnetic ordering with opposite staggered magnetization in
the two orbitals, while (5.8) to an inter-orbital dimerization, presumably also staggered. Both
these instabilities occur in the particle-hole channel. The last one, (5.9), occurs in the particle-
particle inter-orbital singlet channel and would correspond to s-wave superconductivity. Since
the irreducible vertices in all the three channels are equally singular, which of these instabilities
really occurs mainly depends on the Green’s function bubbles

T
∑
n

∑
k

G(iεn + i0+,k + Q) G(iεn,k),

in the particle-hole channels, where Q is the modulation wave-vector, as opposed to

T
∑
n

∑
k

G(iεn,k) G(−iεn,−k),
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in the Cooper one. While the latter is always singular in a Fermi-liquid phase, the former is
singular only if nesting occurs at some Q, or if a van Hove singularity exists at the chemical
potential, in which case Q = 0. If we exclude both these events, which can always be done
within DMFT by simply preventing particle-hole instabilities in the self-consistency procedure,
only superconductivity might emerge. However, within model (5.21), we should not expect any
room for a superconducting instability, especially near the MIT. In fact, the “bare” scattering
amplitude in the inter-orbital singlet Cooper channel,

A0
0 = U − 3J/4, (5.22)

is always repulsive near the MIT, assuming J � W � U . This näıve expectation is actually

Figure 5.10: Anomalous self-energy at zero frequency as function of U/W for different J ’s

wrong. In Fig. 5.10 we draw the anomalous superconducting self-energy at zero-frequency and
half-filling as function of U/W for different J ’s. For large J/W , as U increases, the anoma-
lous self-energy decreases, in agreement with (5.22), until a first order phase transition from
a superconductor to a Mott insulator takes place. For intermediate couplings, the first order
transition remains but the off-diagonal self-energy starts to behave non-monotonically, namely
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after a first decrease, it increases again. More interesting and surprising is the weak J/W be-
havior. Here the off-diagonal self-energy decreases until, roughly when U = 3J/4, see (5.22),
superconductivity disappears into a normal metal behavior. However, just before the MIT,
superconductivity reappears with an anomalous self-energy reaching values that are orders of
magnitude larger than within the BCS U = 0 domain. This behavior might suggest, as we
speculated, that this superconducting region before the MIT is just the response of the lattice
model to the impurity critical behavior. Indeed, if we prevent superconductivity and calculate
numerically the self-energy of the metastable metallic solution, which could be identified as the
hypothetical normal phase, we find a behavior very similar to that one of the impurity. By
fitting the calculated self-energy with the model one, Eq. (5.16), we can even extract the values
of T− and T+ as shown in Fig. 5.11. Several things are worth noticing. First, the Landa-Fermi
liquid behavior breaks down and turns, before the MIT, into a pseudo-gaped phase. Next, the
maximum of the anomalous self-energy occurs right at the point T− = 0, as expected. Finally,
the MIT is not accompanied by a vanishing energy scale, as in the Brinkmann-Rice scenario, but
occurs when T+ = T− within the pseudo-gaped regime. Notice that, the pseudo-gaped phase is
semi-metallic, with vanishing Drude weight. On the other hand, this “normal” phase is unstable
to superconductivity, which does have a finite Drude weight which vanishes only at the MIT.
This implies that, in the pseudo-gaped regime, the on-set of superconductivity is accompanied
by an increase of Drude weight, unlike what happens in the BCS regime. This increase of Drude
weight, has a counterpart in the impurity model. At the fixed point, the impurity model has a
finite entropy, implying that the conduction bath is unable to fully screen the impurity degrees
of freedom. If one allows for a bath where anyone of the relevant symmetries is broken, new
screening channels open up, that are able to quench also the residual fixed point entropy. The
fixed point therefore is washed out, but screening energy is gained. Translated in the lattice
model, this screening energy gain does correspond to band energy gain.

In conclusion, at least in model (5.21), the physics of the underneath impurity model trans-
lates nicely into the behavior of the lattice model even after full DMFT-self-consistency. This
is further supported by the full phase diagram as function of U/W and doping away from
half-filling, shown in Fig. 5.12.

91



Figure 5.11: Fit values of T+ and T− of the normal phase. Also shown is the off-diagonal
self-energy
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Figure 5.12: Phase diagram of (5.21) with J/W = 0.02 as function of U/W and doping δ = 2−n.
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