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1. Introduction

The numerical treatment of many-body problems in solid state physics be-
longs to the realm of computer physics. Computer physics has evolved from
’number crunching’ and ’dump data plotting’ into a competitive field on a par
with experimental an theoretical physics strongly entwined with both. Real
experiments can be replaced by computer experiments as it is common prac-
tice in industry for monetary reasons. On the premises that an appropriate
is simulated, the numerical experiment is often much faster, less expensive
and in some cases even the only feasible alternative. With little extra effort,
system parameters can be modified and novel material synthesized and the
respective properties investigated.
As far as the links to theoretical physics are concerned the situation is similar.
Computer physics has been disdained for many years by the ’pure theorists’
claiming numerical results provide numbers and no insights. The situation
has drastically changed over the last decade as testify by the significant and
still increasing fraction of publications based essentially on computational
techniques. Computer simulations from the theoretical viewpoint allow to
scrutinies different models to figure out which fits the data best. Parameters
can be modified with ease investigating wide parameter regimes with one
and the same method. Otherwise different approaches have to be tailored for
different parameter regimes, like week coupling strong-coupling etc.
A widely used approach is the density functional theory in various guises. The
most famous approximation is the Local density approximation with various
approximations to the unknown exchange-correlation potential. By definition,
these one-particle approaches describe weekly correlated systems. Strongly
correlated many-body systems are defined as those in which the simultaneous
presence of all particles is essential for the respective phenomena. DFT is in
principle exact in the sense that These techniques will not be discussed here.





2. Many Body Hamiltonians

The genuine ab-initio Hamiltonian describing condensed matter is the ab-
initio Hamilton operator containing in the Oppenheimer-approximation. It
forms the starting point for bandstructure calculations in the local-density-
approximation (LDA), in which electronic correlations are treated on a mean-
field level. The realm of LDA calculations are weakly correlated systems,
as opposed to strongly correlated electronic systems in which the detailed
electron-electron-interaction is responsible for correlation effects such as anti-
ferromagnetism, Kondo-effect, fractional quantum-hall effect, Mott-transition
and many more.
An exact treatment of ab-initio many-body problems is illusory. There are
two options, either we stick to the ab-initio many-body Hamiltonian and are
satisfied with uncontrolled approximations or we resort to model Hamilto-
nians which hopefully still contain the crucial essentials of the sought-for
physical effect.
Model systems have the advantage that they can either be solved exactly
by analytical means or they can be approached by numerical techniques.
Numerical techniques are often the only feasible and reliable method for
studying the really tough and long-standing problems of such systems.
We will begin with a concise description of the most important Hamilton op-
erators for strongly correlated quantum systems, which have been the subject
of intense numerical studies over the last 1-2 decades.

2.1 Hubbard model

We start out with the good old Hubbard model [?, ?] a simple model for in-
teracting electrons in narrow bands. Assuming localized orbitals and a strong
screening of the Coulomb interaction, only the local density-density repulsion
is allowed for. The mere on-site interaction is certainly a crude approximation
to the Coulomb interaction, but, for certain phenomena, it bears already the
essential features of strongly correlated electrons. The Hubbard model was
originally introduced to study the metal-insulator transition and ferromag-
netism of itinerant electrons in narrow bands. During the last decade it has
re-gained considerable attention in connection with the high temperature
superconductors.
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Possible realizations of this model are atoms with partially filled 3d-shells.
In these systems the physics at the Fermi-level is governed by electrons in
localized (3d-) orbitals. The model is defined by

H = −t
∑
〈i,j〉

σ

a†iσajσ

︸ ︷︷ ︸
H0

+U
∑

i

ni↓ni↑

︸ ︷︷ ︸
H1

−µN̂ , (2.1)

where a†iσ(aiσ) create (annihilate) fermions of spin σ =↑, ↓ in a Wannier
orbital centered at site i. niσ denotes the occupation number operator
niσ = a†iσaiσ. The electrons move in tight binding bands, with a transfer
integral t between nearest neighbor sites, as indicated by 〈i, j〉. The strength
of the Coulomb interaction is U . The number of lattice-sites will be denoted
by N. If not stated otherwise the underlying lattice will be ”simple cubic”
in 1-D, 2-D, or 3-D. For U À t double-occupancies are energetically un-
favourable. The dominant contributions to the low-lying eigenstate are those
real-space configurations in which there are as few double-occupancies as
possible. Of particular physical interested is the situation near half-filling. At
half-filling there are as many electrons as there are site, namely N . Both spin
directions get their equal share. The energetically favoured configurations are
those with one electron per lattice site. The charge movement his hampered
by a potential energy barrier of hight U . Unless there an applied voltage does
not overcome this threshold there will be no significant current. The system
is insulating. The reasons is merely the on-site Coulomb repulsion. Without
U the system would be a perfect metal at half-filling. The same energy gap
shows up in inverse photoemission. To bring an extra electron into the system
an additional energy U has to be paid. In the insulating state only the spin
degrees of freedom are dynamic and it can be shown in second order pertur-
bation theory that the Hubbard model maps onto an Heisenberg model with
antiferromagnetic nearest-neighbor spin-spin interaction.
For grand canonical calculations, in (2.1) a chemical potential µ is included
which couples to the particle-number operator

N̂ =
∑

i

ni↓ + ni↑ . (2.2)

Besides the on-site repulsion some applications also include nearest-neighbor
density-density repulsion, as well, or even long-ranged density-density inter-
actions. The model

H = HHubbard + V
∑

〈ij〉
ninj

is called the extended Hubbard model. We will also be interested in the
negative-U (attractive) Hubbard model

H = −t
∑

〈i,j〉 σ

a†iσajσ − |U |
∑

i

(
ni↓ − 1

2
)(

ni↑ − 1
2
)− µN̂
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In this notation the chemical potential vanishes at half-filling 〈n〉 = 1 which
follows immediately from the invariance under particle-hole transformation.
Particularly useful is the asymmetric particle-hole transformation

a†i↑ → a†i↑ ai↑ → ai↑

a†i↓ → eiQxiai↓ ai↓ → e−iQxia†i↓
(2.3)

with Q = (π, . . . , π). Equation (2.3) leaves the nearest neighbor hopping
term of the Hamiltonian invariant, changes the sign of the onsite-Hubbard
interaction and introduces a homogeneous magnetic field in z-direction

H −→ H0 + |U |
∑

i

(
ni↓ − 1

2
)(

ni↑ − 1
2
)− µ

∑

i

(ni↑ − ni↓)︸ ︷︷ ︸
2σz

i

−µN . (2.4)

Hence, the negative-U model maps onto the repulsive Hubbard model in a
homogeneous magnetic field of strength h = 2µ. The latter vanishes only at
half-filling. Interesting consequences of (2.3) are

∆†
i = a†i↑a

†
i↓ ←→ eiQxia†i↑ai↓ = eiQxiσ+

i

∆i = ai↓ai↑ ←→ e−iQxia†i↓ai↑ = e−iQxiσ−i
ni = ni↑ + ni↓ ←→ ni↑ − ni↓ + 1 = 2σz

i + 1

(2.5)

σ
(+,−,z)
i are the Pauli matrices. Equation (2.5) can be used to deduce re-

sults for the negative-U Hubbard model from those of the repulsive one.
For instance the staggered magnetization in x,y- direction in the repulsive
case maps onto pair-field operators ∆i and the staggered magnetization in
z-direction translates into charge-density waves. Since at half-filling the re-
pulsive Hubbard model in 2d exhibits long-ranged antiferromagnetic order at
T=0K, there is a coexistence of superconductivity and charge-density waves
in the attractive model.

2.2 Heisenberg model

The Hubbard type models describe itinerant electrons. If the charge degrees
of freedom are bound to the atomic positions only the spin degrees of free-
dom remain active. They are described by the Heisenberg hamiltonian, the
fundamental model in the theory of magnetism of local magnetic moments.
It is defined by

H =
∑

i,j

Jz
ijS

z
i Sz

j + J⊥ij
(
Sx

i Sx
j + Sy

i Sy
j

)
+ B

∑

i

Sz
i (2.6)

where Sα
i (α = x, y, z) is the α-th component of the spin-operator and J

stands for the exchange integrals. The last term describes the coupling to an
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external magnetic field B in z-direction. This model is particularly geared
for magnetic insulators like the 3d-,4d-,4f-,5f-systems.
There are several special cases of the Heisenberg model

• Jz = J⊥ . . . isotropic Heisenberg model
• J⊥ = 0 . . . Ising model
• Jz = 0 . . . XY-model

The spin operators obey the well known commutator algebra

[Sα
i , Sβ

j ] = i δi,j εαβγ Sγ
i .

For numerical purposes it is convenient to introduce ladder operators

S±i = Sx
i ± i Sy

i .

Therefore, the operators Sx and Sy can be written as

Sx
i =

1
2
(S+

i + S−i ) , Sy
i =

1
2i

(S+
i − S−i ) .

Instead of Sx and Sy we use the operators S+ and S− to express the Hamil-
tonian

H =
∑′

ij

{
Jij Sz

i Sz
j +

1
2

J⊥ij (S+
i S−j + S−i S+

j )︸ ︷︷ ︸
Fij

}
+ B

∑

i

Sz
i

where the summation is restricted to i 6= j.

2.2.1 Spin 1/2 Heisenberg Antiferromagnet

The isotrope spin-1/2 Heisenberg antiferromagnet (J < 0) attracts particular
interest as being the strong coupling limit of the Hubbard model at half-filling
(N↑ = N↓ = N/2) with J = −4t2/U [?]. Moreover, it is governed by quantum
effects more than any other spin system.
However, the perfectly ordered Neel-state |↑↓↑↓〉 is not the ground state of
the system.
The Hamiltonian has the special form

H = −J
∑

〈ij〉

{
Sz

i Sz
j +

1
2
Fij

}
.

We have used the common sign convention for the exchange-integral. In the
antiferromagnic case J is negative. The spin-spin interaction is restricted
to nearest-neighbor sites, indicated by 〈ij〉. The so-called flip operator Fij

has a simple meaning for spin-1/2 particles. It swaps the spin-values of the
neighboring sites i and j, if the spins have opposite sign. Otherwise, the
application of Fij yields the null vector.
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F̂i,j | . . . , σi, . . . , σj , . . .〉 =

{
| . . . ,−σi, . . . ,−σj , . . .〉 if σi = −σj ,

|0〉 otherwise.
. (2.7)

A gauge-transformation can be invoked to map the spin-1/2 Heisenberg
Hamiltonian onto a hard-core boson system with repulsive nearest neighbor
interaction [?]. This representation is useful from the numerical and analyt-
ical point of view [?]. The transformation is defined by S+

i = b+
i , S−i = bi

and Sz
i = 1/2 − b+

i bi, with the hard-core constraint b+2

i = 0. For J < 0 and
a bi-partite lattice it is favorable to perform an additional gauge transforma-
tion bi → ei · bi, with ei being 1 on one sublattice and -1 on the other. The
hard-core boson Hamiltonian then reads

H = −J
∑

<ij>

b+
i bi + J

∑

<ij>

ninj + E0 . (2.8)

In the above equation, E0 = −Jz(N − Nb)/4, with Nb being the number
of bosons and z the number of nearest neighbors. Nb is related to the z-
component of the total spin via Nb = N/2−Sz

0 . Both, Nb and Sz
0 are conserved

quantities. It has been shown that the ground state of (2.8) is nodeless and
unique [?, ?].

2.2.2 Ising Model

The extrem unisotropic limit of the Heisenberg model is the Ising model, in
which only the z-components of the spins are retained. Since no x- and y-
components of the spins are involved, the Hamiltonian commutes with every
Sz

i and the individual z-components are good quantum numbers. Therefore,
the Ising model is a purely classical model, all operators commute and the
only quantum-feature is the fact that only discrete values for Sz

i are allowed.
The Hamiltonian of the Ising model reads

H = −J
∑

<i,j>

Si Sj + B
∑

i

Si , (2.9)

where the spin-variables are restricted to ±1. The Ising model is of particular
interest for the theory of phase transitions since the 2d-Ising model has a
second order phase-transition at a finite temperature and it can be solved
analytically. There are various generalizations in the literature for a wide
range of applications not only in physics but also in biology and in the field
of pattern recognition. A particular class of generalizations leads to the so-
called Potts-model. For a survey see [?].

2.2.3 The Potts Model

In the Potts–model the spins si can take on discrete values ranging from
1, 2, . . . , q. We restrict the discussion to periodic homogeneous systems where
the Hamiltonian reads
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H = −J
∑

<i,j>

δsi,sj . (2.10)

As in the case of the Ising model, only nearest-neighbor spins interact and
thus the sum is again restricted to nearest-neighbor sites i and j on the
underlying lattice. Positive J values represent ferromagnetic coupling where,
at T = 0, all spin values are equal. This ferromagnetic ground state is q-fold
degenerate.
The Hamiltonian of the Potts model for q = 2 is related to that of the Ising
model

HI = −JI
∑

<i,j>

si sj (2.11)

via

HI = −JI
∑

<i,j>

δsi,sj − (1− δsi,sj )

= −2 JI
∑

<i,j>

δsi,sj
+ JI N z (2.12)

= −J
∑

<i,j>

δsi,sj + JI N z .

Here, J = 2 JI and z is the number of nearest neighbour pairs per lattice
site. In the case of the Potts model, magnetic fields B couple via

H1 = −B

N∑

i=1

δsi,1 (2.13)

where N denotes the number of spins. This formula relates to that for the
Ising model via

H1I = −B
∑

i

si = −B
∑

i

(
δsi,1 − (1− δsi,1)

)

= −2B
∑

i

δsi,1 + B N . (2.14)

Again, the coupling constant for the Ising model is twice that of the Potts
model.

2.3 Kondo Model

The Kondo model was designed to describe the interaction of itinerant and
localized (d, f) electrons of transition metal oxides such as LaMaO3, which
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are presently the subject of intense investigations. Due to strong Hund’s rule
coupling, the localized electrons are in a high spin state, which results in
This means that at every lattice site i there is a localized spins Si. The sites
i of these magnetic moments can either be distributed randomly to discribe
magnetic impurities in metals or they can form a regular lattice. Like in
the Hubbard model, the itinerant electrons are treated in the tight-binding
approximation. They are subjected to strong exchange coupling with the
localized spins. In its simplest form, the Kondo Hamiltonian reads

Ĥ = −t
∑

<i,j>, σ

a†iσajσ − JH

∑

i,σ,σ′
a†iσ′σσ′σaiσ · Si + J

∑

〈ij〉
SiSj . (2.15)

Here, only one band of itinerant electrons is considered and electron–electron
interaction are neglected. The coupling constant JH has typical values of
JH ≈ 6eV. Its influence is much greater than that of the hopping term.
Therefore, it is quite informative to consider the limit JH/t →∞, where the
itinerant spins are forced to align with the local ones. Then a misalignment of
Si and Sj suppresses the hopping, and, consequently a ferromagnetic ground
state of the localized spins is favored. In this limit, an effective Hamiltonian
can be derived. This is most easily done when considering the localized spins
as classical vectors of equal length S pointing in the direction

ni = (sin θi cos ϕi, sin θi sin ϕi, cos θi) .

This simplification can be justified for large spins S = 3/2, 5/2, . . .. In the
case of classical localized spins, the effective Hamiltonian reads

HjH=∞ = −
∑

<i,j>

ti,j d†i↑dj↑ (2.16)

with a hopping integral ti,j now depending on the relative orientation of the
neighboring spins

ti,j = t
[
cos(θi/2) cos(θj/2) + sin(θi/2) sin(θj/2)e−i(ϕi−ϕj)

]
.

The operators d†i↑(di↑) generate (annihilate) itinerant electrons whose spins
point in the direction of the localized spin Si. We see that ti,j = 0 for anti-
parallel spins (θi = π − θj and ϕi = π + ϕj) and ti,j = t for parallel spins
(θi = θj and ϕi = ϕj).
Another strategy is to to integrate out the effects of the itinerant electrons.
This procedure yields the so–called double exchange Hamiltonian. In case of
S = 1/2 it is of the Heisenberg form

HS=1/2 = −3
8

t− 1
2

t
∑

<i,j>

Si · Sj . (2.17)

In the general case, the double exchange Hamiltonian involves powers of the
scalar product (Si · Sj)n up to n = 2S.





3. Numeric representation

There are four prerequisites a basis set should fulfill:

• It must be rapidly generated
• matrix elements are easy to compute
• modest need of memory
• fast access of states.

We will discuss the best basis sets and there numerical representation for spin
and charge systems separately.

3.1 Spin-1/2 systems

Instead of the two spin values ±1 we use the integers ni = σi+1
2 ∈ {0, 1}.

One is prompted to identify the sequence of ni values as bit-pattern of the
integer I =

∑N
l=1 nl 2l−1. For instance the basis state |ψ〉 = |−1,+1,−1, +1〉

is represented by n = {0101}, which again is mapped onto the integer 4. This
representation has two advantages, it keep the memory requirements as small
as possible and it speeds up certain numerical operations.
Since Sz =

∑N
i=1 Sz

i commutes with the Hamiltonian, the Hamilton matrix
is block-diagonal in the sectors with fixed Sz values, i.e. fixed numbers Nσ of
σ-spins. For a given Sz-sector the number of ones in the bit-pattern is fixed,
which reduces the number of basis states to

L =
(

N

N↑

)
, (3.1)

where N is the number of lattices sites and

Sz =
1
2

2N↑ −N .

For instance, if the number of sites is N = 16 there are 216 = 65536 possible

basis states in total, whereas there are merely
(

16
8

)
= 12870 for Sz = 0, i.e.

N↑ = N↓ = 8, which is much less. Translation and Rotation could also be
exploited which would reduce the number of basis state even further.
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3.1.1 Generation of basis states

Not all integer values represent a permissible configuration, since the number
of ones and zeros in the bit-pattern are fixed. We generate the basis states
in such a way that the corresponding integer values are in increasing order.
The basis states and there integer representations are therefore

|ϕ1〉 = {
N−N↑

︷ ︸︸ ︷
0, 0, . . . , 0, 0,

Nσ

︷ ︸︸ ︷
1, 1, 1, . . . , 1}; I1 = 2Nσ − 1

|ϕ2〉 = {0, 0, . . . , 0, 1, 0, 1, 1, . . . , 1}; I2 = 2N↑+1 − 1− 2N↑−1

|ϕ3〉 = {0, 0, . . . , 0, 1, 1, 0, 1, . . . , 1}; I3 = 2N↑+1 − 1− 2N↑−2

...
...

|ϕL〉 = {1, 1, 1, . . . , 1︸ ︷︷ ︸
N↑

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−N↑

}; IL = 2N − 2N−N↑
.

As an example we consider a four-site cluster with Sz = 0, i.e. two up and
two down spins. Since the basis states are ordered, basis states given in the

no 1 2 3 4 5 6
bit 0011 0101 0100 1001 1010 1100

integer 3 5 6 9 10 12

Table 3.1. Example for the representation of spin pattern as integers.

spin representation can be rapidly by bisection search.

3.2 Electronic systems

For the electronic systems described above, i.e. Hubbard, Anderson, Emery
and t-J, we can construct a convenient basis in real space. Here we restrict
the discussion to a single orbital per lattice site. A generalization is obvious.
The vector in real space can be written as

|ψ〉 =
N↑∏

i=1

a+

Γ↑i

N↓∏

j=1

a+

Γ↓j
|0〉 (3.2)

where |0〉 denotes the vacuum state and Γ ↑i is the lattice site of the i-th
spin-up electron and Γ ↓j is the lattice site of the j-th spin-down electron. For
instance
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∣∣∣∣
1 2 3 4
↑ t ↓ ↑↓

〉
(3.3)

is represented by Γ ↑ = {1, 4} and Γ ↓ = {3, 4}. Another way to represent this
basis is by

|ψ〉 =
N∏

i=1

(a+
i↑)

n↑i

N∏

i=1

(a+
j↓)

n↓j |0〉 (3.4)

where n↑i , n
↓
j ∈ {0, 1} indicate whether or not site i is occupied by a spin-up

or spin-down electron. The state (3.3) is represented by n↑ = {1, 0, 0, 1} and
n↓ = {0, 0, 1, 1}. N is the number of lattice sites. Yet another way to encode
the same basis is

|ψ〉 =
N∏

i=0

Oi |0〉 Oi ∈ {1̂, a+
i↑, a+

i↓, a+
i↑ a+

i↓} , (3.5)

where the Operator Oi creates either an empty site, a site occupied by an
up- or down-electron, or a doubly occupied site. The number of basis states
is 4N . Doubly occupied site are forbidden in the tJ model and the number of
basis-states reduces in this case to 3N . Since the electronic spin is conserve,
N↑ and N↓ are good quantum numbers. The number of basis states in the
sector of fixed Nσ values is therefore

(
N
N↑

) (
N
N↓

)

As an example take N = 16 and N↑ = N↓ = 8. The number of basis states

is then 416 = 4.294.967.296, whereas
(

16
8

) (
16
8

)
= 165.636.900 In the t-J-

model there is the additional constraint that there must not be any double-
occupancy. The number of basis states reduces further to

N !
N↓!N↑!Nh!

,

where Nh = N − N↓ − N↑ is the number of holes, or rather the number of
empty sites. We implicitly assume that there are less electrons than sites,
i.e. we are below half-filling. In the just mentioned half filling example the
number of states is merely 12870. In all models, given the proper boundary
conditions, translational invariance can be exploited which allows to reduce
the number of basis states roughly by a factor N .
For the same reasons as before it is recommended to compress the representa-
tion. To this end representation (3.4) is favorable, since the two spin species
are separately treated and for each spin-direction the sequence of values nσ

i

can be interpreted as a bit-pattern. In the previous example n↑ = {1, 0, 0, 1}
corresponds to the integer I↑ = 9 and n↓ = {0, 0, 1, 1} corresponds to I↑ = 3.
Each basis-state is therefore represented by a pair of integers (I↑, I↓).
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3.2.1 Generation of basis states

The generation if the basis states is similar to that for the spin systems. The
only difference is that we have to generate two integers fort the two spin
species. For spin-σ there are

Lσ =
(

N

Nσ

)

basis states. The total number of states for a given sector N↑, N↓ is L = L↑L↓.

3.3 Computation of the Hamilton matrix

Here we want to compute the matrix elements

hν′ν = 〈Φν′ |H|Φν〉 (3.6)

of the Hamiltonian in suitable basis states |Φν〉. To this end we split the
Hamiltonian into individual contributions H(l)

H =
∑

l

H(l) (3.7)

such that the application of one such term H(l) to a basis state |Φν〉 yields
again a basis state or the null vector, i.e.

H(l) |Φν〉 = h
(l)
ν′ν |Φν′〉 .

The full matrix element 〈Φν′ |H|Φν〉 is obtained by summing up all contri-
butions h

(l)
ν′ν . If there is only one term H(l) in Hamiltonian that mediates

between the two basis states |Φν〉 and |Φν′〉 than hν′ν = h
(l)
ν′ν .

For concreteness we consider the Hubbard Hamilton matrix in the real-space
basis (3.4), characterized by the set of occupation numbers |Φν〉 =

∣∣{n(ν)
i,σ}

〉

for all lattice sites i and the two spin directions, with n
(ν)
iσ ∈ {0, 1}. The

Hubbard interaction H1 in (2.1) is diagonal in this basis, so we have

hνν = U
∑

i

n
(ν)
i↑ n

(ν)
i↓ .

There are no other contributions to the diagonal elements. Each summand in
the kinetic energy of (2.1) represents an individual contribution to (3.7). It
is, however, more sensible to combine the back-and-forth hopping processes
for a particular nearest-neighbour pair

H(l) = −t
(
a†i0σ0

aj0σ0
+ h.c.

)
. (3.8)
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Application of one of these terms, H(l) say, to a basis state |Φν〉 =
∣∣{n(ν)

i,σ}
〉

results either in the null vector, if n
(ν)
i0σ0

and (ν)nj0σ0 are both occupied or
empty, i.e.

cl = 0 ; if n
(ν)
i0,σ0

= n
(ν)
j0,σ0

.

Otherwise, the hopping process is possible and results in another basis state
|Φν′〉 =

∣∣{n(ν′)
i,σ }

〉
which differs from |Φν〉 only in the exchange of the occupa-

tion number n
(ν)
i0,σ0

and n
(ν)
j0,σ0

, i.e.

n
(ν′)
i,−σ0

= n
(ν)
i,−σ0

∀i

n
(ν′)
i,σ0

= n
(ν)
i,σ0

∀i 6= i0, j0

n
(ν′)
i0,σ0

= n
(ν)
j0,σ0

n
(ν′)
j0,σ0

= n
(ν)
i0,σ0

.

(3.9)

There is only one hopping process H(l) mediating between the two basis
states under consideration. The respective matrix element is therefor

hν′ν =

{
−t S if (3.9) is fulfilled,

0 otherwise.
(3.10)

The hopping process can result in a sign S due to the fermi statistics of the
electrons. E.g. consider a two-dimensional 4× 4 lattice. The lattice sites are
enumerated e.g. as follows

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

.

There are many other ways of numbering the sites. The choice is arbitrary but
fixed for the entire calculation. We consider the hopping between the adjacent
sites 2 and 6 of one spin species. In the following we suppress the spin indices.
The state |Φν〉 be given by {niσ} = {0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.
The state reads according to (3.4)

|Φν〉 = a†3a
†
4a
†
5a
†
6|0〉 .

Application of the hopping operator

−t(a†2a6 + a†6a2)

results in the state
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|Φν〉 = a†3a
†
4a
†
5a
†
2 |0〉 = − a†2a

†
3a
†
4a
†
5 |0〉 .

The sign is given by
S = (−1)∆n ,

where ∆n is the number of electrons at the lattice sites between the sites i
and j. In the above example ∆n = 3.
What have we learned so far. We started out with an index ν ∈ {1, . . . , L} for
one of the basis states |Φν〉, for which we know the representation {n(ν)

iσ }. The
individual terms of the Hamiltonian couple to other basis states represented
by a bit-pattern {n′iσ} or rather the corresponding integer representations
(I ′↑, I

′
↓). We still need to know the corresponding index ν′ of the basis state.

Here it comes in handy that the basis states have been generated with in-
creasing integer representation, so we can invoke a bisection search to find
the respective indices ν. From the point of view of computer time this is
crucial. The number of basis states one is interested in is typically L = 108

and more. A brute force search takes O(L) steps, while the bisection search
merely needs O(log2(L)) operations. For 108 the difference is a factor of 106.
The index search has to be performed for each nonzero matrix element of the
hamiltonian. In the Hubbard model there are roughly

Nnz = L d N , (3.11)

where d is the dimension of the underlying lattice and N the number of lattice
sites.
The sign depends on the order in which electrons appear after the hopping
process. For the interaction part, th prefactor is either U

3.4 Sparse matrices

In the above-mentioned representation the many-body Hamilton-matrices
Hij are sparse. We have seen that only a small fraction of all matrix ele-
ments is not zero. It is sensible to store only the nonzero matrix elements not
only to save memory but also to speed up operations of the form Hx which
form the heart of the exact diagonalization schemes that will be discussed in
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the next chapter. The most transparent algorithm to store sparse matrices is

Algorithm 3.4.1: Compact Storage(H, Hc, ind,Nnz)

initialize:
L = size(H)
Nnz = 0

do i = 1, L
do j = 1, L

if H(i, j) 6= 0 then
Nnz = Nnz + 1
Hc(k) = H(i, j)
ind(k, 1) = i
ind(k, 2) = j

endif
end do

end do

The only operation the matrix will be used for is action on a vector. The com-
pact storage can directly be used to perform only the nonzero multiplications
as depicted in the following algorithm

Algorithm 3.4.2: Multiply H x(Hc, ind,Nnz, x, y)

initialize:
y = 0

do i = 1, Nnz

i1 = ind(i, 1)
i2 = ind(i, 2)
y(i1) = y(i1) + Hc(i) ∗ x(i2)

end do





4. Exact diagonalization

In this chapter we describe methods for the exact evaluation of eigenvalues
and eigenvectors of many-body Hamiltonians. There are very powerful exact
diagonalization algorithms in the textbooks about numerical mathematics.
A severe drawback of these schemes is there limitation to matrix sizes of the
order N = O(103). Strongly correlated many-body problems, however, start
with N = O(108) and go way beyond. It is obvious that conventional schemes
are powerless in these cases. On the other hand there are no better algorithms
for the full diagonalize of general hermitean matrices. The loop holes are the
words ’full diagonalization’ and ’general’. The interesting quantum features
of strongly correlated many-body systems show up at very low temperatures.
For the theoretical description of these temperatures, merely the ground-
state and a few low-laying eigenvalues and the corresponding eigenvectors
are required. Moreover, for most systems an appropriate basis can be found,
in which the Hamilton-matrices are sparse. The number of nonzero matrix
elements is typically O(N) rather than O(N2).
A standard scheme from numerical mathematics, which allows to take ad-
vantage of the sparseness of a matrix and which allows to concentrate on the
groundstate only, is the so-called power method or rather the vector-iteration
due to von Mises.

4.1 The Power Method

The Power method is a simple and yet powerful technique to determine the
eigenvector corresponding to the ‘dominant’ eigenvalue. The eigenvalue prob-
lem for the Hamilton operator H under consideration reads

Ĥ |ϕl〉 = εl |ϕl〉 with 〈ϕl |ϕl′ 〉 = δl,l′ (4.1)

with real eigenvalue εl and mutually orthogonal and normalized eigenvectors
|ϕl〉. The eigenvalues may be degenerate. We introduce a spectral shift

Ĥ → Ĥ ′ = Ĥ − EsÎ and εl → ε′l = εl − Es ,

which does not affect the eigenvectors |ϕl〉. Therefore, we can adapt Es in
such a way that the ground state yields the dominant eigenvalue, i.e.
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Fig. 4.1. Schematic representation of the eigenvalues of the Hamiltonian. The gap
between the lowest two eigenvalues is denoted by ∆

|ε′0| ≥ |ε′l| ∀ l .

To ensure that the groundstate energy ε′0 has the greatest modulus of all
eigenvalues the condition

ε′0 < −W

2
=

εN − ε0
2

has to be fulfilled, which yields the condition

Es >
ε0 + εN

2
.

Next we want to apply the Power method to Ĥ ′ starting with an initial vec-
tor |x0〉 chosen at random, possibly subject to suitable symmetry constraints.
After n repeated applications of Ĥ ′ we obtain

|x̃n〉 def= Ĥ ′n |x0〉 =
N∑

l=0

|ϕl〉ε′ln 〈ϕl |x0 〉︸ ︷︷ ︸
cl

, (4.2)

where we have inserted an expansion of the initial state |x0〉 in the basis of
eigenstates {|ϕl〉} with the coefficients cl. The normalization yields

|xn〉 def=
|x̃n〉
||x̃n|| =

∑
l clε

′
l
n|ϕl〉(∑

l |cl|2ε′l2n
)1/2

, (4.3)

or, equivalently, by dividing numerator and denominator by c0 ε′n0

|xn〉 =

∑
l

cl

c0

(
ε′l
ε′0

)n

|ϕl〉
(∑

l

(
cl

c0

)2 (
ε′l
ε′0

)2n
)1/2

. (4.4)

We introduce the definition

q
def= max

i

∣∣∣∣
ε′i
ε′0

∣∣∣∣ .
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For the time being we assume that the groundstate energy is not degener-
ate and the initial vector has a non-vanishing overlap with the sought-for
groundstate. In this case q < 1 and the Power method converges to the true
groundstate

|xn〉 = |ϕ0〉+ O (qn) −→
n→∞

|ϕ0〉 .

If the initial vector is orthogonal to the groundstate, the iteration converges
to the lowest eigenstate which has a non-vanishing contribution in |x0〉. This
can be used directly to determine states with given symmetry, e.g. the disper-
sion relation of the lowest excitations. In order to guarantee the convergence
towards the lowest energy for a given symmetry, one can choose an appro-
priate initial vector by imposing the desired symmetry on a random vector.
The ratio q is either

∣∣∣ ε′1
ε′0

∣∣∣ or
∣∣∣ ε′N

ε′0

∣∣∣. The best convergence is achieved if

∣∣∣∣
ε′1
ε′0

∣∣∣∣ =
∣∣∣∣
ε′N
ε′0

∣∣∣∣ ⇒ q =
∣∣∣∣
1−∆/W

1 + ∆/W

∣∣∣∣ .

Obviously, the convergence is governed by the ratio ∆/W . The closer the
excited states is to the groundstate, the longer it takes to get rid of its con-
tribution in |xn〉. If the lowest eigenvalue is degenerate

ε′0 = ε′1 = . . . = ε′L < εL+1

then then the Power iterates |xn〉 converge towards the projection of the
initial vector |x0〉 onto the eigenspace of the first eigenvalue:

|xn〉 −→
n→∞

P |x0〉
〈x0|P |x0〉

where P is the projector onto the eigenspace of the ground state

P =
L∑

l=0

|ϕl〉〈ϕl| .

Using the expansion (4.2) for the energy-expectation value

〈xn|Ĥ|xn〉 = ε0 + O
(
|ε1/ε0|2n

)

shows that the energy converges faster than the vector |xn〉. On passing we
note that the power-method allows also to determine excited states. Once
the ground state is approximately determined a new sequence of iterations
is started with an initial vector orthogonal to the approximate groundstate.
Since the groundstate is approximate and due to the presence of numerical
noise, the vectors xn loose the orthogonality to the ground with increasing
number of iterations and it is expedient to re-orthogonalize the vectors once
in a while.
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4.1.1 Eigenvalue Estimates

For the power method as well as for other numerical algorithms discussed
in succeeding chapters it is advantageous to have a rough idea about the
eigenvalue spectrum or to be able to give exact bounds for the individual
eigenvalues.

Exact interval bounds. We will now derive a very useful exact expression
for lower and upper bounds of individual eigenvalues. We assume that we
have a reasonable approximation |ψ〉 for an normalized eigenvector, obtained
e.g. by the Power method or Quantum Monte Carlo techniques. The corre-
sponding approximate energy reads ε = 〈ψ|H|ψ〉. In addition we define the
standard deviation σ =

√
< H2 > − < H >2. We will prove that there is at

least one exact eigenvalue of Ĥ in the interval

I = [ε− σ, ε + σ] .

First, we expand the vector |ψ〉 in the basis {|ϕi〉} of eigenvectors of Ĥ

|ψ〉 =
∑

i

ci |ϕi〉 .

The variance can then be estimated by

σ2 =
∑

i

|ci|2 (εi − ε)2 ≥ (εm − ε)2
∑

i

|ci|2
︸ ︷︷ ︸

=1

,

where εm denotes the exact eigenvalue that is closest to ε. We infer that
|εm − ε| ≤ ρ and hence

εm ∈ [ε− σ, ε + σ] .

Different to the meaning of standard deviations in statistics, in the present
context, the exact eigenvalue lies with certainty in the one-sigma regime. The
standard-deviation can be used as convergence criterion for Quantum-Monte
Carlo simulations or exact diagonalization techniques.

4.2 The Lanczos Method

The Power method uses only a small part of the information actually pro-
vided by the power method. One can do much better with only a little more
computational effort. This goal is achieved by the Lanczos method.
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4.2.1 The poor man’s Lanczos scheme

To begin with, we analyze the information content of the first Power method
iteration. After one step we have two normalized vectors |x0〉 and |x1〉, which
are in general not orthogonal, and the corresponding energy-expectation val-
ues are

EP
0 = 〈x0|Ĥ|x0〉

EP
1 = 〈x1|Ĥ|x1〉 .

The basic idea of the Lanczos method is to diagonalize the Hamiltonian in the
subspace spanned by {|x0〉, |x1〉}, i.e. to minimize the energy of the variational
Ansatz

∣∣xL
1

〉
= α |x0〉+ β |x1〉

EL
1 = min

α,β

〈
xL

1

∣∣H
∣∣xL

1

〉
〈
xL

1

∣∣xL
1 〉

≤ 〈x1|H|x1〉 .

The last inequality follows since 〈x1|H|x1〉 corresponds to the special case
α = 0, β = 1. It can easily be shown that the energy of the Lanczos method
is actually lower than that of the Power method provided 〈x1|Ĥ|x0〉 6= 0.
This procedure can be repeated by choosing the Lanczos vector xL

1 as initial
vector of the subsequent iteration. The results of the Power method are com-
pared with those of the simple Lanzcos scheme for a 10 × 10 tight binding
matrix.

H =




−1 1 0 . .
1 −1 1 0 .
. 1 −1 1 0
. . 1 −1 1

. . . 1
. . .




where an appropriate spectral shift has been introduce. The energies are
depicted in Fig. 4.2. Obviously, the ’poor man’s lanczos’ scheme is superior,
but not overwhelmingly so. Particularly disturbing is the observation, that
it takes more than 10 iterations, which is the dimension of the matrix, to
achieve convergence.
It is, however, straight forward, to generalized and improve the above ideas.
Instead of taking only two vectors into account, we keep all vectors |xn〉,
generated during the iterations of the Power method. The set of vectors |xn〉
spans the n-dimensional Krylov space. The minimization of the variational
energy leads to the generalized eigenvalue problem depending on the ma-
trix elements of the Hamiltonian and on the overlap matrix of the vectors
|xn〉. Linear dependencies of these basis states can lead to severe numeri-
cal problems. It is therefore better to transform the basis set {|xn〉} into an
orthonormal set of vectors that still spans the Krylov space.
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Fig. 4.2. Comparison of the speed of convergence to the exact ground-state energy
of the Power method and the Lanczos method. Lanzcos 2 stands for the introductory
example of only two vectors

4.2.2 Lanczos Method for Hermitean Matrices

The Lanczos procedure starts with an appropriate normalized initial vec-
tor |x0〉, chosen along the lines outlined before. The corresponding energy-
expectation value is

ε0 = 〈x0|Ĥ|x0〉 .

Next we apply the Hamiltonian to |x0〉 in order to determine the next basis
vector

|x̃1〉 = Ĥ|x0〉 − ε0 |x0〉 .

Apparently, the two vectors are orthogonal.

〈x0 |x̃1 〉 = 0

Again, the vector is normalized

|x1〉 =
|x̃1〉
||x̃1||

and the energy-expectation value is computed

ε1 = 〈x1|Ĥ|x1〉 .

The next basis vector is generated using the prescription

|x̃2〉 = H|x1〉 − ε1 |x1〉 − k1|x0〉

We choose the coefficients ε2 and k1 such that |x̃2〉 is orthogonal to the
previous basis vectors {|x0〉, |x1〉}:
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〈x1 |x̃2 〉 = 〈x1|Ĥ|x1〉 − ε1 − k1 〈x1 |x0 〉︸ ︷︷ ︸
=0

= 0

〈x0 |x̃2 〉 = 〈x0|Ĥ|x1〉 − ε1 〈x0 |x1 〉︸ ︷︷ ︸
=0

−k1 = 0

Hence, ε1 has again the interpretation of an expectation value,

ε1 = 〈x1|Ĥ|x1〉 and k1 = 〈x0|Ĥ|x1〉 .
By construction, the quantity k1 is real, since

k∗1 = 〈x1|Ĥ|x0〉 = 〈x1 |x̃1 〉+ ε0 〈x1 |x0 〉︸ ︷︷ ︸
=0

= ||x̃1|| ∈ R .

We add the normalized vector |x̃2〉 to the set of orthonormal basis states
{|x0〉, |x1〉, |x2〉}. Next we skip a several iterations steps and assume that
we have already generated a set of n + 1 mutually orthonormal vectors
{|x0〉, |x1〉, . . . |xn〉}. The next vector |xn+1〉 is determined as follows

|x̃n+1〉 = Ĥ|xn〉 − εn |xn〉 − kn |xn−1〉
εn = 〈xn|Ĥ|xn〉
kn = 〈xn−1|Ĥ|xn〉 = ||x̃n||

|xn+1〉 =
|x̃n+1〉
||x̃n+1|| .

We prove that |xn+1〉 is orthogonal to all previous vectors.

〈xn |x̃n+1 〉 = 〈xn|Ĥ|xn〉︸ ︷︷ ︸
εn

−εn 〈xn |xn 〉︸ ︷︷ ︸
=1

−kn 〈xn |xn−1 〉︸ ︷︷ ︸
=0

= 0

〈xn−1 |x̃n+1 〉 = 〈xn−1|Ĥ|xn〉︸ ︷︷ ︸
kn

−εn 〈xn−1 |xn 〉︸ ︷︷ ︸
=0

−kn 〈xn−1 |xn−1 〉︸ ︷︷ ︸
=1

= 0

For i = 1, . . . , n− 2 we have

〈xi |x̃n+1 〉 = 〈xi|Ĥ|xn〉 − εn 〈xi |xn 〉︸ ︷︷ ︸
=0

−kn 〈xi |xn−1 〉︸ ︷︷ ︸
=0

= 〈xi|Ĥ|xn〉 .

The hermitecity of Ĥ yields

〈xi|Ĥ|xn〉 =
(
〈xn|Ĥ|xi〉

)∗

=
(
〈xn|(|x̃i+1〉+ εi |xi〉+ ki |xi−1〉)

)∗

=
(
〈xn |x̃i+1 〉︸ ︷︷ ︸

=0

+εi 〈xn |xi 〉︸ ︷︷ ︸
=0

+ki 〈xn |xi−1 〉︸ ︷︷ ︸
=0

)∗

= 0 ,
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which shows that the constructed set of n + 1 vectors is indeed orthogonal.
Moreover, it shows that the Hamilton matrix is tridiagonal in the Lanczos
basis:

Ht
ij =




ε0 k1 0 . .
k1 ε1 k2 0 .
0 k2 ε2 k3 0
. 0 k3 ε3 k4

. . 0 k4 ε4




. (4.5)

After L iterations the remaining task is the solution of the eigenvalue problem
of the (L + 1)× (L + 1) tridiagonal matrix Ht

Htcν = Eν cν .

The best approximation to the eigenvectors of the original Hamiltonian ex-
panded in the the subspace Hk spanned by the Lanczos vectors {|x0〉, . . . , |xL〉}
are therefore given by

|ψν〉 =
L∑

i=0

cν
i |xi〉 ,

where the components cν
i of the eigenvectors of the tridiagonal matrix Ht

present the expansion coefficients in the Lanczos basis.
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We summarize the Lanczos algorithm

Algorithm 4.2.1: Lanczos Algorithm(.)

assign: nmax, Ndiag, L, δ

initialize:
|x̃0〉 : appropriate initial vector
|x−1〉 = 0
n = 0
converged = false

while not converged

kn =
√
〈x̃n|x̃n〉

if kn < δ then converged = true
|xn〉 = |x̃n〉/kn

εn = 〈xn|Ĥ|xn〉
if MOD(n,Ndiag) = 0 then

Ht = TridiagonalMatrix({ε0, . . . εn}; {k1 . . . kn})
Solve eigenvalue-problem(Ht; Eν , cν)
if E1 . . . EL are converged then converged = true

endif
|x̃n+1〉 = Ĥ|xn〉 − εn |xn〉 − kn |xn−1〉
n = n + 1
if n ≥ nmax then converged = true

end while

In Fig. 4.2 the general performance of the Lanczos method is compared with
that of the Power method and that of the simple Lanczos scheme. We ob-
serve a much faster convergence of the results of the Lanczos method and, as
expected, exact convergence is achieved after 10 steps.
We will close this section by discussing a remarkable feature of the approx-
imate eigenvectors. Let us define the projector P̂L into the subspace HL

P̂L =
L∑

i=0

|xi〉〈xi| . (4.6)

The approximate eigenvector |ψν〉 is eigenvector of the projected Hamiltonian

ĤL := P̂LĤP̂L , (4.7)
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which is easily proven by

P̂LĤP̂L |ψν〉 =
L∑

i,j=0

|xi〉Ht
ij〈xj |

L∑

l=0

cν
l |xl〉

=
L∑

i,j=0

|xi〉Ht
ij cν

j =
L∑

i,j=0

|xi〉Eν cν
i

= Eν |ψν〉 .

This implies that by virtue of the spectral theorem ĤL can be expressed as

ĤL =
L∑

ν=0

|ψν〉 Eν 〈ψν | . (4.8)
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4.2.3 Dynamical Correlations

Dynamical correlations describe how a crystal reacts to weak external per-
turbations denoted by E(t). Linear response theory expresses the reaction as

R(t) =
∫ t

−∞
χ(t, t′)E(t′) dt′ (4.9)

where χ is actually a function of the time-differences

χ(t, t′) = χ(t− t′) . (4.10)

The response (4.9) has the form of a convolution and Fourier transformation
yields a simple product

R(ω) = χ(ω)E(ω) . (4.11)

The dynamical correlation function χ(ω), or rather susceptibility, for zero
temperature can be computed by the Lanczos procedure with little extra
effort.

4.2.4 Dynamic Green’s functions

To every dynamical correlation function corresponds a Green’s function. For
an operator Ô the retarded Green’s function is defined by

〈〈
Ô(t) ; Ô†〉〉 def= −i Θ(t)

〈
[Ô(t), Ô†]ε=±1

〉
(4.12)

= −i Θ(t)
(〈

Ô(t) Ô†
〉

+−ε
〈
Ô† Ô(t)

〉)
,

where in the second line the symbol 〈 〉 denotes the thermodynamic average.
Commutator (ε = +1) and anticommuator (ε = −1) Green’s functions can be
chosen at will. For a detailed introduction to the theory of Green’s functions
see e.g. [?]. At zero temperature, the average corresponds to the expectation
value of the operators in the ground state |ψ0〉 of the many-particle system.
In this we focus on T = 0. Finite temperatures will be discussed later on.
We proceed by inserting the Heisenberg time evolution of the operator Ô

Ô(t) = eiĤt Ô e−iĤt , Ô
def= Ô(t = 0) (4.13)

into (4.12). Since |ψ0〉 is the exact ground-state with energy E0 we have

e−iĤt |ψ0〉 = e−iE0t |ψ0〉 and 〈ψ0| eiĤt = 〈ψ0| eiE0t , (4.14)

and with w+ = w+iδ, where δ is an infinitesimal positive quantity, we obtain
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〈〈
Ô; Ô†

〉〉
w

def=
∫ ∞

−∞
eiw+t

〈〈
Ô(t), Ô†

〉〉
dt (4.15)

= −i
∫ ∞

0

eiw+t
(〈

eiĤtÔe−iĤtÔ†
〉
− ε

〈
Ô†eiĤtÔe−iĤt

〉)
dt

= −i
∫ ∞

0

eiw+t
(〈

Ôe−i(Ĥ−E0)tÔ†
〉
− ε

〈
Ô†ei(Ĥ−E0)tÔ

〉)
dt

= −i



〈
Ô

∞∫

0

eiw+te−i(Ĥ−E0)tdt Ô†
〉
− ε

〈
Ô†

∞∫

0

eiw+tei(Ĥ−E0)tdt Ô

〉
 .

With the aid of the spectral theorem the integral can now be evaluated. Now,
taking into account the identity −i i = 1 and recalling that we perform the
average in the ground state |ψ0〉, we obtain

〈〈
Ô, Ô†

〉〉
w

=
〈
Ô

1
w+ − (Ĥ − E0)

Ô†
〉
− ε

〈
Ô† 1

w+ + (Ĥ − E0)
Ô

〉

=〈ψ0|ÔÔ†|ψ0〉
〈
ϕ0

∣∣∣ 1
w+ − (Ĥ − E0)

∣∣∣ϕ0

〉
(4.16)

− ε 〈ψ0|Ô†Ô|ψ0〉
〈
ϕ̃0

∣∣∣ 1
w+ + (Ĥ − E0)

∣∣∣ϕ̃0

〉
.

The normalized state vectors |ϕ0〉 and |ϕ̃0〉, defined by,

|ϕ0〉 =
Ô†|ψ0〉√

〈ψ0|ÔÔ†|ψ0〉
|ϕ̃0〉 =

Ô|ψ0〉√
〈ψ0|Ô†Ô|ψ0〉

(4.17)

are used as initial vectors for two independent Lanczos sequences. The tridi-
agonal form of Ĥ, and likewise of the energy denominators H̃ = w±(H−E0),
in the Lanczos basis can be exploited to determine the expectation value of
the inverse of H̃ = w±(H−E0) in (4.17). As for the ground state we calculate
the matrix elements for the Lanczos vectors

〈ϕi|Ĥ − E0|ϕi〉 = ∆εi

〈ϕi|Ĥ − E0|ϕi+1〉 = ki

〈ϕi|Ĥ − E0|ϕj〉 = 0 ∀i,j , |i− j| > 1 (4.18)

Along with the orthonormality

〈ϕi |ϕj 〉 = δi,j ,

we obtain the tridiagonal form

(w+ ± (Ĥ − E0)) =




w+ ±∆ε0 k1 0 . .
k1 w+ ±∆ε1 k2 0 .
0 k2 w+ ±∆ε2 k2 0
. 0 k3 w+ ±∆ε3 k3

. . 0 k4
. . .




.
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We need the (0, 0)–element of the inverse. The (ij)-element of the inverse
matrix can be expressed by

A−1
ij = (−1)i+j det ∆ij

det A
,

where ∆ij denotes the submatrix of A obtained upon eliminating from A the
i-th row and the j-th column. Especially for the sought-for (0, 0)-element of
the inverse is

A−1
00 =

det∆00

det A
, (4.19)

Because of the tridiagonal structure of the above matrix, the formula simpli-
fies as follows. Consider the matrix

A =




A00 A01 0 . .
A10 A11 A12 0.
0 A21 A22 A23 0
. 0 A32 A33 A34

. . 0 A43 A44




The determinant can be expanded along the first row and column yielding

det(A) = A00 det

(
A11 A12 0 .
A21 A22 A23 0
0 A32 A33 A34
. 0 A43 A44

)
−A01A10 det

(
A22 A23 0 .
A32 A33 A34 0
0 A43 A44 A45
. 0 A54 A55

)
. (4.20)

Upon defining the determinant of the submatrix of A beginning with the i-th
column and row, i.e.

Di
def= det




Ai,i Ai,i+1 0 .
Ai+1,i Ai+1,i+1 Ai+1,i+2 0

0 Ai+2,i+1 Ai+2,i+2 Ai+2,i+3

. 0 Ai+3,i+2 Ai+3,i+3


 (4.21)

we can express the sought-for element of the inverse matrix (4.19) by

(A−1)00 =
1

D0
D1

.

We can now use (4.20) to express D0
D1

D0

D1
=

A00D1 − |A01|2D2

D1
= A00 − |A01|2

D1/D2

by D1
D2

. Iterating the above reasoning yields

Dl

Dl+1
= All − |All+1|2

Dl+1/Dl+2
,
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which leads to a continued fraction for the desired quantity

(A−1)00 =
1

D0/D1
=

1

A00 − |A01|2

A11 − |A12|2

A22 − |A23|2

A33 − . . .

. (4.22)

For we original problem (w+ ± Ĥ)−1
00 the continued fraction reads

(w+ ± (Ĥ − E0))−1
00 =

1

w+ ±∆ε0 − |k1|2

w+ ±∆ε1 − |k2|2

w+ ±∆ε2
. . .

(4.23)

This expression is well suited for numerical treatment and can be iterated for
arbitrary w.
To this end, we introduce the abbreviations

di = ω+ ±∆εi for i = 0, 1, . . .

ei = |ki|2 for i = 1, 2, . . .

Beginning with the upper left 2 × 2 submatrix of A the continued fraction
has the form

1
d0 − e1

d1−R1

=
d1 −R1

d0d1 − e1 − d0R1
=:

a1 + a0R1

b1 + b0R1
. (4.24)

In the last equation we anticipated the general form. The remainder R1 has
again the form of a continued fraction. In general the remainder reads

Ri =
ei+1

di+1 −Ri+1
. (4.25)

Upon substituting this for i = 1 into (4.24) we obtain

a1 + a0R1

b1 + b0R1
=

a1︷ ︸︸ ︷
a1d2 + a0e2 +

a0︷ ︸︸ ︷
(−a1) R2

b1d2 + b0e2︸ ︷︷ ︸
b1

+(−b1)︸ ︷︷ ︸
b0

R2
(4.26)

which is again of the form.

a1 + a0R

b1 + b0R
. (4.27)
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Thus the iteration formula for i = 1, 2, . . . deduced from the above consider-
ations is given by

a1 −→ a1di+1 + a0 ei+1

a0 −→ −a1

b1 −→ b1di+1 + b0 ei+1

b0 −→ −b1 ,

with the initial values

a1 = d1, a0 = −1, b1 = d0d1 − e1, b0 = −d0 . (4.28)

The sequence is iterated for each ω individually and ends if the Krylov space
is exhausted or if a desired convergency of

g(ω) =
a1

b1

is achieved. In order to avoid numerical instabilities, it is recommendable to
rescale all quantities a0, a1, b0, b1 e.g. by b1 = 1 after each iteration.
In some cases it may happen that the Green’s function of interest is not
diagonal in the operators, e.g.

gAB =
〈
Â†

1
w+ − (Ĥ − E0)

B̂
〉

.

In this case we define two operators Ôα = Â+αB̂ and determine the diagonal
Green’s functions

gα =
〈
Ô†α

1
w+ − (Ĥ − E0)

Ôα

〉
.

It is easily possible to separate gAB by linearly combining the four Green’s
functions for α = {±1,±i}.

4.2.5 Lehmann – Representation

Before considering some simple examples, we want to present an alternative
way of calculating Green’s functions, the so Lehmann representaion. Again
we consider the matrix elements of the form

〈ψ0| Ô† 1
ω+ ± (Ĥ − E0)

=̂ |ψ0〉 , (4.29)

where Ô is some appropriate operator and |ψ0〉 represents the ground state.
Like before we define |ϕ0〉 as the normalized vector Ô |ψ0〉, which serves as
initial vector of a Lanczos sequence. We insert a complete orthonormal set of
eigenvectors of Ĥ given by
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I =
∑

ν

|ψν〉〈ψν | .

Then (4.29) can be cast into the form

〈ψ0| Ô† 1
ω+ ± (Ĥ − E0)

Ô |ψ0〉 =
∑

ν

〈ψ0| Ô† |ψν〉 〈ψν | Ô |ψ0〉
ω+ ± (Eν − E0)

.

Next we expand the eigenvectors |ψν〉 in the Lanczos basis {|ϕi〉}

|ψν〉 =
∑

i

c
(ν)
i |ϕi〉 , with c

(ν)
i = 〈ϕi |ψν 〉

to obtain

〈ψν | Ô |ψ0〉 =
∑

i

c
(ν)∗
i 〈ϕi| Ô |ψ0〉︸ ︷︷ ︸

∼|ϕ0〉

=
√
〈ψ0|O†O|ψ0〉

∑

i

c
(ν)∗
i 〈ϕi |ϕ0 〉︸ ︷︷ ︸

δi,0

=
√
〈ψ0|O†O|ψ0〉 c(ν)∗

0 .

This means that except of the first terms all summands vanish. Thus (4.29)
can be approximated by

〈ψ0| Ô† 1
ω+ ± (Ĥ − E0)

Ô |ψ0〉 = 〈ψ0|O†O|ψ0〉
NL∑
ν=1

|c(ν)
0 |2

ω+ ± (Ẽν − Ẽ0)
, (4.30)

where only the first components c
(ν)
0 of the expansion of the eigenvector

|ψν〉 in the Lanczos basis are required. In general, the eigenstates |ψν〉 (ν =
1, . . . , NL), computed by the Lanczos procedure, do not form a complete set of
basis vectors, nor are the respective energies Ẽν exact eigenvalues of Ĥ. How-
ever, with increasing number of iterations, the Lanczos procedure converges
towards the exact Green’s function and the convergency can be monitored
and stopped as soon as the desired accuracy is reached. The approximate
Lehmann representation (??) is an explicit sum of simple poles. The same
holds true for the continued fraction, less obviously though.
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4.3 Finite Temperature Lanczos

In this section we present the finite-temperature Lanczos method (FTLM),
developed by Jaklič and Prelovšek [?], which is a straight forward general-
ization of the Lanczos procedure to finite temperatures.

4.3.1 Static Observables

We consider a Hamiltonian Ĥ in a Nst dimensional vector space. In the
canonical ensemble the expectation value of a static operator Â can be written
as

〈
Â

〉
=

1
Z

tr
(
Â e−βĤ

)
=

1
Z

∑

|ϕ〉

〈
ϕ
∣∣Â e−βĤ

∣∣ϕ〉
(4.31)

with the partition function

Z =
∑

|ϕ〉

〈
ϕ
∣∣e−βĤ

∣∣ϕ〉
. (4.32)

The trace is carried out in any complete orthonormal set of Nst basis vectors
|ϕ〉. Of course, if all the eigenvalues En and all the eigenstates |ψn〉 of the
Hamiltonian are known, we immediately have

〈
Â

〉
=

1
Z

Nst∑
n=1

e−βEn
〈
ψn

∣∣Â∣∣ψn

〉
(4.33)

and the partition function simplifies to

Z =
Nst∑
n=1

e−βEn . (4.34)

Since a complete solution of the eigenvalue problem can only be achieved for
very small or very selected model systems one might be tempted to replace
the eigenvalues and eigenvectors by the corresponding quantities obtained by
the Lanczos procedure outlined in the previous section. It appears that the
direct implementation of this idea does not work out well. Consider the limit
β = 0, or rather T →∞. In this limit we have

Z
〈
Â

〉
=

L∑

i=0

〈
ψi

∣∣Â
∣∣ψi

〉

and

Z =
L∑

i=0

〈
ψi

∣∣ψi

〉
= L + 1 .
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Obviously, the results depend heavily on the number of Lanczos iterations
L and accurate results are only guaranteed for L → Nst, which is however
beyond our reach. A moderate modification of this idea, however, leads to
the FTLM that manages with L ¿ Nst.
To begin with, we replace the complete set of orthonormal vectors by random
vectors

∣∣Φ(ν)
〉

as outlined in ??. Next we expand the exponential of the
Hamiltonian in (4.31) in a power series

〈
Â

〉
=

1
ZNr

Nr∑
ν=1

∞∑

k=0

(−β)k

k!
〈
Φ(ν)

∣∣ÂĤk
∣∣Φ(ν)

〉
. (4.35)

The resulting expectation values
〈
Φ(ν)

∣∣ÂĤk
∣∣Φ(ν)

〉
will be calculated in the

frame of the Lanczos algorithm. To this end, L ≥ k Lanczos iterations are
performed starting with |x0〉 =

∣∣Φ(ν)
〉
/‖Φ(ν)‖. Next we introduce the pro-

jection operators P̂k defined by (4.6). Since the Hamiltonian is tridiagonal
in the Lanczos basis, the application of the Hamiltonian on a vector in Hk

yields a vector in Hk+1, i.e.

Ĥ P̂k = P̂k+1 Ĥ P̂k = P̂L Ĥ P̂k (4.36)

as long as L > k. The first vector of the basis is
∣∣Φ(ν)

〉
which implies∣∣Φ(ν)

〉
= P̂0

∣∣Φ(ν)
〉

and we obtain along with (4.36)
〈
Φ(ν)

∣∣Â Ĥk
∣∣Φ(ν)

〉
=

〈
Φ(ν)

∣∣Â Ĥk−1ĤP̂0

∣∣Φ(ν)
〉

=
〈
Φ(ν)

∣∣Â Ĥk−1P̂1ĤP̂0

∣∣Φ(ν)
〉

=
〈
Φ(ν)

∣∣Â P̂kĤP̂k−1 . . . P̂2ĤP̂1ĤP̂0

∣∣Φ(ν)
〉

=
〈
Φ(ν)

∣∣Â P̂LĤP̂L . . . P̂LĤP̂LĤP̂L

∣∣Φ(ν)
〉

=
〈
Φ(ν)

∣∣Â Ĥk
L

∣∣Φ(ν)
〉

In the last but one step we have substituted all projectors by P̂L since k ≤ L
has been assumed. In the last equation the definition (4.7) of the projected
Hamiltonian is used. According to (4.8) we alternatively have

〈
Φ(ν)

∣∣Â Ĥk
∣∣Φ(ν)

〉
=

L∑

i=0

(E(ν)
i )k

〈
Φ(ν)

∣∣Â
∣∣ψ(ν)

i

〉〈
ψ

(ν)
i

∣∣Φ(ν)
〉

. (4.37)

So far everything is exact as long as k ≤ L. In order to get a grip on the
higher order terms in the Taylor expansion we stick to (4.37) even for k > L,
which brings (4.35) into the approximate form

〈
Â

〉
=

1
ZNr

Nr∑
ν=1

∞∑

k=0

(−β)k

k!

L∑

i=0

(E(ν)
i )k

〈
Φ(ν)

∣∣Â∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣Φ(ν)
〉

. (4.38)

The reliability of the approximation increases with increasing temperature,
since for small β, high powers k are strongly suppressed by the factor βk.
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Intuitively, we expect the approximation to be even better for zero temper-
ature, as the FTLM is build on the zero temperature Lanczos. We will see
immediately than this speculation is erroneous. In (4.38) we can recombine
the k-dependent terms to an exponential function

〈
Â

〉
=

1
ZNr

∑
ν

L∑

i=0

e−βE
(ν)
i

〈
Φ(ν)

∣∣Â
∣∣ψ(ν)

i

〉〈
ψ

(ν)
i

∣∣Φ(ν)
〉

(4.39)

Similarly, for the partition function we obtain

Z =
1

Nr

Nr∑
ν=1

Nst∑

i=1

e−βE
(ν)
i |〈Φ(ν)

∣∣ψ(ν)
i

〉|2 . (4.40)

For β → 0 the expressions simplify to Z
〈
Â

〉
= 1

Nr

∑
ν

〈
Φ(ν)

∣∣Â
∣∣Φ(ν)

〉
and

Z = 1
Nr

∑
ν

〈
Φ(ν)

∣∣Φ(ν)
〉

. The mean values are identical to the exact infinite
temperature results tr(A) and tr(1̂) = Nsp, respectively.
These expressions are slightly different to what we described in the intro-
ductory remarks. Of course, if we were able to use the eigenvectors |Φl〉 of
the Hamiltonian as orthonormal set

∣∣Φ(ν)
〉

everything would be perfect. The
Lanczos iteration would stop right after the first iteration (L = 0) and both∣∣∣ψ(ν)

i

〉
and Ei would be exact and we recover (4.33). Unfortunately, since the

Lanczos eigenvectors and eigenenergies depend upon the initial vector
∣∣Φ(ν)

〉
,

(4.39) is no longer a trace and the accuracy of (4.39) depends upon the choice
of the vectors

∣∣Φ(ν)
〉
. This fact is particularly obvious for T = 0

〈
Â

〉
T=0

= lim
β→∞

∑Nr

ν=1 e−βE
(ν)
0

〈
Φ(ν)

∣∣Â∣∣ψ(ν)
0

〉〈
ψ

(ν)
0

∣∣Φ(ν)
〉

∑Nr

ν=1 e−βE
(ν)
0

∣∣∣
〈
Φ(ν)

∣∣ψ(ν)
0

〉∣∣∣
2

We assume that enough Lanczos iterations per random vector |ϕν〉 have been
performed so that both, lowest eigenvalue and corresponding eigenvector are
converged to the exact values leading to

〈
Â

〉
T=0

=
1

Nr

∑Nr

ν=1

〈
Φ(ν)

∣∣Â∣∣ψ0

〉〈
ψ0

∣∣Φ(ν)
〉

1
Nr

∑Nr

ν=1

〈
Φ(ν)

∣∣ψ0

〉〈
ψ0

∣∣Φ(ν)
〉

Numerator and denominator correspond to the stochastic evaluation of

tr(Â|ψ0〉〈ψ0|) =
〈
ψ0

∣∣Â∣∣ψ〉

and

tr(|ψ0〉〈ψ0|) =
〈
ψ0

∣∣ψ0

〉
= 1 ,

respectively. The stochastic evaluation of numerator and denominator yields
unbiased results for both quantities separately. The ratio, however, is biased.
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On the one hand, because the mean of the inverse is different from the inverse
of the mean and on the other hand, because numerator and denominator are
estimated by the same set of random vectors.
According to (??) the variance of the numerator is 2

Nr

〈
ψ0

∣∣Â∣∣ψ0

〉2
and that

of the denominator reads 2
Nr

. In both cases, the relative statistical error is√
2

Nr
. I.e., although each Lanczos iteration is converged to the, as far as the

ground state is concerned, and yields the exact ground state expectation value〈
ψ0

∣∣Â∣∣ψ0

〉
of the sought for observable, the stochastic evaluation via (4.39)

introduces a considerable statistical uncertainty. At first glance, it appears
to be expedient to switch to the original zero temperature for T → 0 results.
It is, however, possible to do better and to treat all temperatures on the
same footing by combining the best of both limits T → ∞ and T → 0.
To this end we go all the way back to the expression for the numerator
Z

〈
Â

〉
= tr

(
e−βĤÂ

)
and rewrite it symmetrically

Z
〈
Â

〉
= tr

(
e−

β
2 ĤÂe−

β
2 Ĥ

)
.

Next we proceed as before, but the Taylor expansion is employed separately
for both exponentials. The same arguments as before lead to

Z
〈
Â

〉
=

1
Nr

Nr∑
ν=1

L∑

i,j=0

e−β
E

(ν)
i

+E
(ν)
j

2
〈
Φ(ν)

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣Â∣∣ψ(ν)
j

〉〈
ψ

(ν)
j

∣∣Φ(ν)
〉

.

Let us consider the low temperature limit. We assume again that enough
Lanczos iterations have been performed and E

(ν)
0 and

∣∣∣ψ(ν)
0

〉
are converged

to the exact ground state energy E0 and eigen vector |ψ0〉, respectively. Only
the ground state contributes in the limit T → 0 and we have

Z
〈
Â

〉
−→
T→0

〈
ψ0

∣∣Â∣∣ψ0

〉 (
e−βE0

1
Nr

Nr∑
ν=1

L∑

i,j=0

∣∣∣
〈
Φ(ν)

∣∣ψ0

〉∣∣∣
2 )

.

Comparison with (4.40) reveals that the bracketed expression is identical
to Z. Both contributions cancel and we and up with the exact result for
T = 0 without any stochastical noise irrespective of the number Nr of random
vectors. There is merely one drawback: when we perform the computation
numerically, we don’t know that the result has no statistical noise, since
numerator and denominator considered separately suffer severely from noise.
The reason for the discrepancy is the fact that both contributions are strongly
correlated, since they are determined with the same set of random vectors.
Correlations are often disadvantageous, but here they are highly desirable
for the correct T = 0 result; we merely need a way to exploit this fact. A
standard tool to estimate nonlinear functionals of random variables is the so



4.3 Finite Temperature Lanczos 41

called jackknife estimator[?]. There is another shortcoming of the estimator
presented thus far: it is biased, since the mean of the inverse is not the inverse
of the mean. In other words, the expectation value of the ratio of the estimates
(4.39) and (4.40), which are both random variables, is in general not the ratio
of the expectation value of numerator and denominator. This bias can also
be reduce by the jackknife approach.

4.3.2 The Jackknife estimator

In this section we describe a statistical approach to deal with biased estima-
tors and which allows to infer the statistical error of the estimate. We follow
closely the ideas of Kendall and Stuart[?]. Suppose we have a sample of N
random variables {r} := {r1, . . . , rN} with which we evaluate an estimator
θ({r}) for the true quantity θ0. We assume that the estimator is biased for
finite sample size N but asymptotically it becomes unbiased. Moreover we
suppose the bias to be analytic in 1/N , i.e. for large N we have the Taylor
expansion

E
(
θ({r})) = θ0 +

c1

N
+

c2

N2
+ O(

1
N3

) . (4.41)

We will discuss the jackknife statistic guided by an example which is of par-
ticular interest to us: the ratio of two functionals

θ({r1, . . . , rN}) =
f({r})
g({r}) .

Obviously, for finite N the estimator is biased but it is asymptotically ex-
act. The estimate based on a particular sample is a random variable which
possesses a distribution p(θ), which is however unaccessible in general. For
our purposes it suffices to determine mean and variance of the distribution.
The key idea of the Jackknife approach is to rewrite the estimator into an
arithmetic mean

θ∗({r1, . . . , rN}) =
1
N

N∑

j=1

θ∗j (4.42)

of suitable random variables θ∗j , which depend on the sample {r}. If these
random variables are iid then θ∗({r1, . . . , rN}) has a normal distibution. The
recipe of the Jackknife begins with the definition of an auxiliary random
variable

θ−j := θ({r1, . . . , rj−1, rj+1, . . . , rN}) ,

which corresponds to the estimator θ, with the element rj removed from the
sample. We now consider the random variable
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θ∗j := N θ({r})− (N − 1) θ−j , (4.43)

which has a simple meaning in the special case

θ({r}) =
1
N

N∑

i=1

ri

of the sample mean. In this case, θ∗j = rj corresponds to the j-the element
of the sample. Therefore the unbiased estimator for the mean is identical to
the arithmetic mean of the random variables θ∗i :

θ∗ :=
1
N

N∑

j=1

θ∗j .

In the general nonlinear case, both estimators θ({r}) and θ∗ differ, and the
latter has a reduced bias. This can be demonstrated as follows. We assume
the bias can be expanded in powers of 1/N

E
(
θ({r})) = θ0 +

c1

N
+

c2

N2
+ O(

1
N3

) ,

where θ0 stands for the exact result to be estimated. Similarly we obtain

E
(
θ−j

)
= θ0 +

c1

N − 1
+

c2

(N − 1)2
+ O(

1
(N − 1)3

) ,

as this estimator is based only upon N − 1 elements. The expectation value
of the modified random number θ∗j is according to (4.43)

E
(
θ∗j

)
= Nθ0 + c1 +

c2

N
− (N − 1)θ0− c1− c2

N − 1
+O(

1
N2

) = θ0 +O(
1

N2
)

We have reached the desired form (4.42) with the definition (4.43) for the
random variables, which allows us to estimate the variance of the estimator
θ∗ by the sample variance of the random variables θ∗j

var(θ∗) =
var(θ∗j )

N
.

It can be shown that if the estimator θ({r}) has a bias of order 1/N as
assumed before, then the variance of θ({r}) and θ∗ are asymptotically the
same[?].
Fortunately, the situation improves significantly for high temperatures. Ac-
cording to (??) the variance of the partition function Z = tr(e−βĤ) deter-
mined via the stochastic evaluation of the trace is var(Z) = 2

Nr
tr(e−2βĤ).

Hence the relative error is
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εZ =
√

2
Nr

√
tr(e−2βĤ)

tr(eβĤ)
.

For β = 0 the result is εZ =
√

2
NstNr

corroborating the general considerations
in ??. In summary, the little digression has illustrated that FTLM works well
for high temperatures while for for T → 0 the zero-temperature Lanczos
procedure is preferable.

4.3.3 Dynamic Observables

For the evaluation of dynamic observables expectation values of the form

〈
B̂(t) Ĉ

〉
=

1
Z

tr
(
e−βĤeitĤB e−itĤC

)
(4.44)

have to be calculated. Here, the first two exponentials can be combined to
a single one so that we actually have to treat two exponentials. We expand
them in two Taylor series and calculate the trace in the basis {

∣∣Φ(ν)
〉},

〈
B̂(t) Ĉ

〉
=

1
Z

∑

|Φ(ν)〉

∞∑

k,l=0

(−β + it)k

k!
(−it)l

l!
〈
Φ(ν)

∣∣ĤkB̂Ĥ lĈ
∣∣Φ(ν)

〉
. (4.45)

For the evaluation of the matrix elements, we insert the projectors P̂k as
we have done for static observables. An additional problem arises from the
fact that Ĥ l does not act directly on the state

∣∣Φ(ν)
〉
. Therefore we have

to perform a new Lanczos iteration with the start vector
∣∣∣Φ̃(ν)

〉
= Ĉ

∣∣Φ(ν)
〉
.

Quantities resulting from this second run will be denoted by tildes, e.g.
∣∣ψ̃j

〉
for the approximated eigenvector. We obtain for the matrix element

〈
Φ(ν)

∣∣ĤkB̂Ĥ lĈ
∣∣Φ(ν)

〉
=

n∑

i,j=0

(Eν
i )k(Ẽν

j )l
〈
Φ(ν)

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂∣∣ψ̃j

〉〈
ψ̃j

∣∣Φ̃(ν)
〉

.

(4.46)

We emphasize that the approximated energy eigenvalues Eν
i depend on the

start vector
∣∣Φ(ν)

〉
. By inserting this expression into (4.45) and exchanging

the order of the sums we obtain

〈
B̂(t) Ĉ

〉
=

1
Z

∑

|Φ(ν)〉

n∑

i,j=0

e−βEν
i e−i(Ẽν

j −Eν
i )t

〈
Φ(ν)

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂
∣∣ψ̃j

〉〈
ψ̃j

∣∣Φ̃(ν)
〉

.

(4.47)

As before, the trace is actually calculated stochastically. The summation
over a whole basis {∣∣Φ(ν)

〉} is replaced by the sum over Nr random vectors
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{∣∣Φ(ν)
〉}. Moreover, the Lanczos procedure is terminated after L iterations.

This yields the approximation

〈
B̂(t) Ĉ

〉
=

Nst

MZ

M∑
m=1

L∑

i,j=0

e−βE
(m)
i e−i(Ẽ

(m)
j −E

(m)
i )t

〈
ξm

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂∣∣ψ̃j

〉〈
ψ̃j

∣∣ξ̃m

〉
.

In order to perform a Fourier transformation of the time variable we multiply
this by eiωt/(2π) and integrate over all times. This yields

〈
B̂(t) Ĉ

〉
ω

=
Nst

MZ

M∑
m=1

L∑

i,j=0

e−βE
(m)
i δ

(
ω − (

Ẽ
(m)
j −E

(m)
i

))

× 〈
ξm

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂
∣∣ψ̃j

〉〈
ψ̃j

∣∣ξ̃m

〉
.

(4.48)

In a simmilar way, the expectation value of the commuted operator
〈
ĈB̂(t)

〉
can be determined. By exploiting the cyclic invariance of the trace, we obtain

〈
ĈB̂(t)

〉
= tr e−βĤĈ eitĤB̂ e−itĤ = tr eitĤB̂ e−itĤe−βĤĈ (4.49)

By performing the same steps as above, we are led to

〈
Ĉ(t) B̂

〉
=

Nst

MZ

M∑
m=1

L∑

i,j=0

e−βẼ
(m)
j e−i(Ẽ

(m)
j −E

(m)
i )t

〈
ξm

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂
∣∣ψ̃j

〉〈
ψ̃j

∣∣ξ̃m

〉

whose Fourier transformed is given by

〈
Ĉ B̂(t)

〉
ω

=
Nst

MZ

M∑
m=1

L∑

i,j=0

e−βẼ
(m)
j δ

(
ω + Ẽ

(m)
j − E

(m)
i

)

× 〈
ξm

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂∣∣ψ̃j

〉〈
ψ̃j

∣∣ξ̃m

〉
.

(4.50)

Therefore, the spectral function of the two operators B̂ and Ĉ is given by

SBC(ω) def=
1
2π

〈
B̂(t)Ĉ − εĈB̂(t)

〉
ω

(4.51)

=
Nst

2πMZ

M∑
m=1

L∑

i,j=0

(
e−βE

(m)
i − εe−βẼ

(m)
j

)
δ
(
ω − (

Ẽ
(m)
j − E

(m)
i

))

× 〈
ξm

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂
∣∣ψ̃j

〉〈
ψ̃j

∣∣ξ̃m

〉
.

The δ-distribution links the difference of the two energies E
(m)
i and Ẽ

(m)
j

with ω. By exploiting this fact, we end up with the formula

SBC(ω) =
1− εe−βω

2π

Nst

MZ

M∑
m=1

L∑

i,j=0

e−βE
(m)
i δ

(
ω − (

Ẽ
(m)
j − E

(m)
i

))

× 〈
ξm

∣∣ψ(ν)
i

〉〈
ψ

(ν)
i

∣∣B̂∣∣ψ̃j

〉〈
ψ̃j

∣∣ξ̃m

〉
. (4.52)
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5.1 Probability Theory in a Nutshell

Let A,B, C, . . . be elementary propositions, e.g. statements that are either
true or false. P (A |C) denotes the probability that A is true under the con-
dition that C is true. This is a so called conditional probability. Notice that
there are no unconditional probabilities in the real world. There are two fun-
damental rules in probability theory that allow to tackle any problem in the
realm of inductive logic: The product rule for joint probabilities

P (A ∧B |C) = P (A |B ∧ C) · P (B |C) = P (B |A ∧ C) · P (A |C) . (5.1)

One immediate consequence is Bayes’ Theorem

P (A |B ∧ C) =
P (B |A ∧ C) · P (A |C)

P (B |C)
. (5.2)

It enables us to calculate backwards probabilities from forward probabilities
and will be used exhaustively.
The sum rule to evaluate the logical OR of propositions

P (A ∨B |C) = P (A |C) + P (B |C)− P (A ∧B |C) . (5.3)

The last term cancels if A and B mutually exclude each other. If the proposi-
tions {Bi}N

i=1 are mutually exclusive and P (∨N
i=1Bi) = 1 (normalization) we

call the set {Bi} complete. In this case we can express any other proposition
A as

A = ∨N
i=1(ABi) . (5.4)

The probability for A can therefore be expressed through the marginalization
rule

P (A |C) = P (∨N
i=1(ABi) |C) =

N∑

i=1

p(A ∧Bi |C) . (5.5)

For continuous quantities x we define dB(x) as the proposition x is from the
the interval (x, x + dx). The corresponding probability is usually expressed
via the the probability density
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P (dB(x) |C) = p(x |C) dx . (5.6)

The marginalization rule for a complete continuous set of propositions reads

P (A |C) =
∫

p(A, x |C) dx , (5.7)

with the normalization condition
∫

p(x |C) dx = 1 . (5.8)

We will have ample opportunities to apply the rules of probability theory, so
we note waste our precious time on mock examples here.

5.2 The Autocorrelation Function

The notion of the autocorrelation function is known in the following form:
Suppose we have a real valued function A(t), then the integral

C(τ) =
∫ ∞

−∞
A(t)A(t + τ) dτ (5.9)

is called the autocorrelation of A(t). Intuitively, C(τ) averages the correla-
tion of values of A separated by the lag τ . If A(t) is a periodic function with
periodicity T , then C(τ) displays sharp peaks at τ = T, 2T, 3T, . . ..
In the context of Monte Carlo Simulations, we will be interested in the
autocorrelation of the fluctuations of an observable A. Suppose we have
N measurements of the observable A. The values are stored in the vector
A = (A0, A1, . . . AN−1). The mean value of A and the deviation of each trial
are given by

Ā =
1
N

N−1∑

i=0

Ai , ∆A = (A0−Ā, A1−Ā, . . . AN−1−Ā) . (5.10)

Analogously to Eq.(5.9), we define the autocorrelation of the observable A as
the autocorrelation of its fluctuations about its mean Ā. A discretized version
of Eq.(5.9) has the form

C(τ) =
1
N

N−1∑
t=0

∆A(t)∆A(t + τ) . (5.11)

The definition (5.11) is problematic since t+τ is not necessarily smaller than
N . There are several possibilities to overcome this problem. The simplest and
straight forward one is to actually restrict the range of the sum from t = 0
to t = N − τ , leading to
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C ′(τ) =
1

N−L

N−1−L∑
t=0

(A(t)−Ā0)(A(t+τ)−Āτ ) , with τ ∈ {0, 1, . . . L} , L ¿ N

(5.12)

where the expectation value Āτ with index τ stands for the average

Āτ
def=

1
N−L

N−1−L∑
t=0

A(t + τ) . (5.13)

Expanding the product of Eq.(5.12) we find

C ′(τ) =
(

1
N−L

N−1−L∑
t=0

A(t)A(t + τ)
)
− Āτ Ā0 (5.14)

In the limit of uncorrelated data, the first sum of Eq.(5.14) tends to the
product Āτ Ā0. Hence, the new definition C ′(τ) is zero for uncorrelated data,
as in the case of an infinite sample. In contrast to that, taking always the
same average Ā instead of Āτ in Eq. (5.12) does not result in C ′(τ) = 0 for
uncorrelated data.

C̃(τ) =
1

N−L

N−L−1∑
t=0

(A(t)− Ā)(A(t + τ)− Ā)

=
1

N−L

N−L−1∑
t=0

A(t) A(t + τ)− Ā(Āτ + Ā0) + Ā2

= Ā0 Āτ − Ā(Āτ + Ā0) + Ā2 6= 0 (5.15)

This means that C(τ) erroneously indicates autocorrelations due to the finite
data size.

5.3 Stochastic Evaluation of Sums and Integrals

We are interested in evaluating the sum or integral

〈f〉 =
∫

f(x) ρ(x) dµ(x) , (5.16)

where µ is a measure and ρ denotes a probability density, ρ(x) ≥ 0,
∫

ρ(x) dµ(x) =
1. In order to simplify our life, we use dµ(x) = dx. We estimate the inte-
gral 〈f〉 by

F =
1
N

N∑

i=1

f(xi) , (5.17)
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where the states xi are chosen in an appropriate random way, that has to be
specified later on. The distribution of the random variable F is – according
to the marginalization rule – given by

p(F |I) =
∫

p(F |x1, . . . ,xN , I)︸ ︷︷ ︸
δ(F− 1

N

∑N
i=1 f(xi))

p(x1, . . .xN |I) dNx . (5.18)

The probability density is normalized to one (0th moment). Furthermore its
mean value (1st moment) reads

E(F | I) =
∫

dFFp(F |I) =
1
N

∫ ∑

i

f(xi)p(x1, . . . ,xN |I) dNx

=
1
N

∑

i

∫

xi

f(xi)




∫

j 6=i

p(x1, . . . ,xN |I)
∏

j 6=i

dxj


 dxi

=
1
N

∑

i

∫

xi

f(xi) p(xi|I) dxi , (5.19)

where the marginal distribution pi = p(xi|I) has been introduced.
Warning! We are using a short hand notation for probabilities and proba-
bility densities in order to avoid overloading the notation. The price that we
have to pay is that we have to be very careful with the correct interpretation.
The expression p(xi|I) actually mean p(xi = xi|I), that is: 1) the random
variable xi takes on the value xi and 2) the conditional complex defines the
context. Here I carries the information that we originally had N random
variable and we have marginalized N − 1 of them, leaving merely the vari-
able with index i. The value that the random variable xi has could also be
noted by ξ and a more comprehensive notation could be pi(ξ|Ai, I), with the
proposition AN

i :over all random variables (x1, . . .xN ) apart form xi has been
marginalized. We will nevertheless stick to the dangerous but short notation.
We demand now that the random variables xi are generated by a a so called
homogeneous stochastical process, which means that p(xi|I) does not depend
on the index i, i.e. pi(ξ|Ai, I) = pj(ξ|AN

j , I)∀j and we end up with the desired
result

E(F |I) =
1
N

∑

i︸ ︷︷ ︸
=1

∫
f(x) p(x | I) dx != 〈f〉 . (5.20)

We have to ensure by the generation process of the values xi that p(x | I) =
ρ(x) The sample mean F is therefore unbiased. In order to scrutinize whether
it is efficient we determine the variance (2nd moment) of F
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E(F 2 | I) =
∫

dFF 2p(F | I)

=
∫

dF F 2 δ(F − 1
N

∑

i

f(xi)) · p(x1, . . . ,xN |I) dNx

=
1

N2

∫ ∑

i,l

f(xi) f(xk) p(x1, . . . ,xN |I) dNx

=
1

N2

∑

i 6=k

∫∫
f(xi) f(xk)p(xi,xk|I) +

1
N2

∑

i

∫
f2(xi) p(xi|I) dµ(xi)

=
1

N2

∑

i 6=k

f(xi)f(xk) +
1

N2

∑

i

f(xi)2 , (5.21)

where we have introduced the marginal distribution p(xi,xk|I) of two vari-
ables. We can combine the result

∑

i,k

f(xi)f(xk) =
∑

i 6=k

f(xi)f(xk) +
∑

i

f(xi)2 . (5.22)

and the variance is

E(∆F 2|I) =
1

N2

∑

i,k

f(xi)f(xk)−
(

1
N

∑

i

f(xi)

)2

=
1

N2

∑

i,k

∆f(xi)∆f(xk)︸ ︷︷ ︸
∼aik

.

(5.23)

It is expedient to introduce the (normalized) autocorrelation aik

aik =
∆f(xi)∆f(xk)

∆2f(xi)
, ∆f(x) = f(x)− f̄ . (5.24)

Along with the definition σ2
f = (∆f(x))2 we have

E(∆F 2|I) =
σ2

f

N2

∑

i,k

aik =
σ2

f

N

∑

l

a(l) . (5.25)

where we used the fact that for homogeneous stochastical processes aik = a(i− k).
For small values of l, the autocorrelation is superposition of exponential de-
cays. For sufficiently large l, the slowest exponential decay dominates the
behavior, which defines a typical correlation length ξ

al = e−|l|/ξ for sufficiently large l . (5.26)

For a quick and dirty estimate, we assume that (5.26) is true for all l. Then
the variance simplifies to
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E(∆F 2|I) =
σ2

f

N

(
2

1− e−1/ξ
− 1

)
. (5.27)

We can distinguish two extreme cases:

ξ → 0 : E(∆F 2|I) =
σ2

f

N
(uncorrelated data) (5.28)

ξ À 1, ξ < N : E(∆F 2|I) =
σ2

f

N/(2ξ)
. (5.29)

These limiting cases are actually always valid if we identify ξ by as an effective
correlation length. Let’s summarize the results: In both cases the dependence
on N goes like 1/N . That means that the uncertainty in F is proportional
to 1/

√
N and independent of the dimension of the problem. Using other

methods like rejection sampling, the error usually increases exponentially
with the dimension. Furthermore ∆F depends on the variance σ2

f and on
the autocorrelation length ξ. The requirements to the process generating the
random variable ξ are thus

• p(x | I) = ρ(x)
• homogeneous process
• ξ as small as possible
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5.4 Markov Chain Monte Carlo (MCMC)

5.4.1 Markov Events

To fix ideas we consider a sequence of L random variables {x1, . . . , xL} which
can take on discrete values from a set of N mutually exclusive discrete states
{ξ1, . . . , ξN}. We denote the realization i of the sequence as

{ξi1 , . . . , ξiL} with iα ∈ {1, . . . , N} . (5.30)

Suppose we can calculate the probability of the event L+1 according to some
law

P (xL+1 = ξj |xL, xL−1, . . . x1) . (5.31)

The sequence is called a Markov – chain if the above probability actually
depends only on xL, i.e.

P (xL+1 = ξj |xL = ξi) =: M
(L)
ji . (5.32)

The quantities M
(L)
ji are called Stochastic matrices of the Markov chain of

Markov matrices. The parameter L, labeling the random variable x, can be
viewed as a time. The matrices M

(L)
ji fulfill the following obvious relations of

positivity and normalization

M
(L)
ji ≥ 0 and

N∑

j=1

M
(L)
ji = 1 . (5.33)

A Markov chain is called homogeneous if the probabilities M
(L)
ji do not de-

pend on L. In the following we focus on homogeneous markov chains. The
marginalization rule allows to calculate the probabilities for transitions from
time 1 to m leading to

P (xm = ξj |x1 = ξi) = (Mm)ji . (5.34)

Suppose that for a given time n the probability that the system is in state ξi

is given by the distribution

P (xn = ξi) =: ρ(n)(ξi) , (5.35)

how does the distribution look like in the next step (at time n + 1).

P (xn+1 = ξi) = ρ(n+1)(ξi) =
N∑

j=1

P (xn+1 = ξi |xn = ξj)︸ ︷︷ ︸
Mij

P (xn = ξj)

Consequently, the evolution is given by
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ρ(n+1)(ξi) =
N∑

j=1

Mij ρ(n)(ξj) . (5.36)

Obviously the norm is a conserved quantity

N∑

i=1

ρ(n+1)(ξi) =
N∑

i=1

N∑

j=1

Mij ρ(n)(ξj) =
N∑

j=1

N∑

i=1

Mij

︸ ︷︷ ︸
=1

ρ(n)(ξj) = 1 . (5.37)

A distribution is called the invariant distribution if it does not change by
application of the stochastic matrix. It is denoted by ρ(∞)(ξi) ≡ ρ(inv)(ξi)
and satisfies at the same time the eigenvalue equation

ρ(∞)(ξi) =
N∑

j=1

Mij ρ(∞)(ξj) (5.38)

with eigenvalue λ = 1. According to what we learned from the vector iteration
scheme, the procedure will converge towards the invariant distribution if the
eigenvalue 1 is the dominant eigenvalue of the stochastic matrix Mji and if
the initial state is not orthogonal to invariant distribution. Starting from the
general eigenvalue equation

N∑

j=1

Mij ρ̃(ξj) = λ ρ̃(ξi) (5.39)

and summing over i and exchanging the order of summation yields

N∑

i=1

N∑

j=1

Mij ρ̃(ξj) =
N∑

j=1

N∑

i=1

Mij ρ̃(ξj) = λ

N∑

i=1

ρ̃(ξi) , (5.40)

resulting in

N∑

j=1

ρ̃(ξj) = λ

N∑

i=1

ρ̃(ξi) . (5.41)

The eigensolutions are

• ∑N
j=1 ρ̃1(ξj) 6= 0 ⇒ λ1 = 1

• ∑N
j=1 ρ̃ν(ξj) = 0 ⇒ λν = arbitrary ∀ν > 1

We start the iteration with an – to some extend – arbitrary density ρ(0)(ξi),
that is normalized to one. This is compatible with any linear combination of
eigenvectors of the form



5.4 Markov Chain Monte Carlo (MCMC) 53

ρ(0)(ξi) = ρ̃1(ξi) +
N∑

ν=2

cν ρ̃ν(ξi) ,

with arbitrary coefficients cν . But obviously, a normalized initial distribution
can never be orthogonal the invariant distribution. We merely have to make
sure that the eigenvalue one is not degenerate and that it is largest eigen-
value of the Markov matrix. The proof can be found in standard text books
on Markov processes, such as the book of William Feller. The proof shows
that one is the dominating eigenvalue for all Markov matrices, i.e. |λν | ≤ 1.
However, in order to guarantee that there is only one eigenvector, the process
has to be ergodic, i.e. starting from any state ξi it is possible to reach any
other state ξj within finite time, or rather for all j there is an integer m for
which (Mm)ij > 0. In the MCMC algorithms we have to make sure that we
if we start from any state i, we can reach any other state by repeated moves.

5.4.2 The Metropolis Hastings choice of the Matrix Mij

We have seen that the Markov process will ultimately converge towards the
invariant distribution. We can exploit this fact if we construct the Markov
matrix such that the invariant distribution is identical to the probability
density ρ(x) of the underlying physical problem for which we want to compute∫

f(x)ρ(x)dNx. A widely used approach stems from Metropolis.

Metropolis – Hastings Algorithm:.

• Start with an initial state x0

• Set the MC time to n = 0
• Create a trial state xT for time n + 1 from the actual state xn according

to the proposal distribution q(xT |xn). This proposal distribution q is
typically a normal deviate

q(xT |x) ∼ exp
(
−1

2
(xT − x)C−1 (xT − x)

)
. (5.42)

The best choice for the matrix C is the covariance matrix of the desired
distribution p(x). Since the covariance matrix will presumably not be
known, a rough estimation usually does a good job. Otherwise, uniform
densities restricted to a cube or a sphere about x are also commonly used
to create the trial state xT in the neighborhood of the reference state x.

• The trial state xT is accepted with probability α(xT ,x) given by

α(xT ,x) = min
(

1,
p(xT ) q(x|xT )
p(x) q(xT |x)

)
. (5.43)

The second factor in the numerator and in the denominator is due to
Hastings. He improved the original idea of Metropolis. This correction
assures detailed balance also in the case q(x|xT ) 6= q(xT |x).



54 5. Monte Carlo Methods

We illustrate the importance of the Hastings factor on the basis of a four
site Ising chain with open boundary conditions. We suppose that the updat-
ing procedure flips two adjacent spins if they are unequal. This keeps the
magnetization constant. Consider the updating of the state

| ↑, ↓, ↑, ↓ | p=1/3−→



| ↓, ↑, ↑, ↓ |
| ↑, ↑, ↓, ↓ |
| ↑, ↓, ↓, ↑ |

p=1−→ | ↑, ↓, ↑, ↓ | .

We see that from the state | ↑, ↓, ↑, ↓ | three different states can be reached
with probability p = 1/3. However, from one of the the resulting states,
namely | ↑, ↑, ↓, ↓ |, only one state can be obtained. I.e. the probabilities back
and forth are different and without the Hastings term the result would be
biased.

5.4.3 The invariant distribution of the Metropolis Hastings MC

In this section we study the convergence and autocorrelation properties of a
Markov-Chain {x1, x2, . . . , xN}. The chain is governed by the homogeneous
Markov process

Mji := P (x̂ν+1 = ξj |x̂ν = i,B) , (5.44)

which is independent of the ’time’ ν. The background information B con-
tains the details of the Markov process, e.g. whether Metropolis-Hastings or
Glauber dynamics is used and which proposal distribution is employed. The
Markov matrix element Mji consists of two parts, the proposal distribution
q(ξk|ξi) to propose the state ξk starting from state ξi and the acceptance or
rejection according to the probability α(ξk|ξi) to accept state ξk coming from
state ξi. We introduce the trial state xT via the marginalization rule

P (x̂ν+1 = ξj |x̂ν = ξi,B) (5.45)

=
N∑

k=1

P (x̂ν+1 = ξj |xT = ξk, x̂ν = ξi,B) P (xT = ξk|x̂ν = ξi,B)

=
N∑

k=1

P (x̂ν+1 = ξj |xT = ξk, x̂ν = ξi,B) q(ξk|ξi) .

According to the rules, by which the Markov process is generated, we have
two alternatives: either the state is accepted or rejected, which is described by
the respective propositions A or A. The repeated use of the marginalization
rule yields
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Mji = P (x̂ν+1 = ξj |x̂ν = ξi,B)

=
N∑

k=1

δjk︷ ︸︸ ︷
P (x̂ν+1 = ξj |A, xT = ξk, x̂ν = ξi,B) α(ξk|ξi) q(ξk|ξi)

+
N∑

k=1

δji︷ ︸︸ ︷
P (x̂ν+1 = ξj |A, xT = ξk, x̂ν = ξi,B)

(
1− α(ξk|ξi)

)
q(ξk|ξi)

= α(ξj |ξi) q(ξj |ξi) + δji

N∑

k=1

(
1− α(ξk|ξi)

)
q(ξk|ξi) . (5.46)

We now multiply with ρ(ξi) and obtain

Mjiρ(ξi) = α(ξj |ξi) q(ξj |ξi)ρ(ξi))

+ δji

N∑

k=1

(
ρ(ξi)q(ξk|ξi)− α(ξk|ξi)ρ(ξi)q(ξk|ξi)

)
.

(5.47)

We immediately realize that the second term of the rhs is symmetric in i and
j. Next we invoke the definition of the acceptance probability α to proof the
the same symmetry for the first term

α(ξj |ξi)ρ(ξi)q(ξj |ξi) = min
(

q(ξj |ξi)ρ(ξi), q(ξi|ξj)ρ(ξj)
)

.

Hence the rhs of (5.47) (and therefore also the lhs) is invariant under exchange
of the indices i and j resulting in the detailed balance condition

Mjiρ(ξi) = Mijρ(ξj) . (5.48)

If we next sum over the index i we have
∑

i

Mjiρi = ρj . (5.49)

I.e., the invariant distribution of the Metropolis-Hastings Markov matrix is
indeed identical to that of the physical problem.

5.4.4 Properties of the Markov matrix

We know already that

N∑

j=1

Mji = 1 . (5.50)
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This has two consequences. First, if we introduce the vector 1 whose compo-
nents are all one, (1)i = 1 we have

1T M = 1T , (5.51)

i.e. 1 is the left-eigenvector of M with eigenvalue 1. The corresponding right-
eigenvector is according to (??) the vector ρ with components ρi.
Multiplication of both sides of (5.49) with (ρiρj)−1/2 yields

ρ
−1/2
j Mjiρ

1/2
i = ρ

−1/2
i Mijρ

1/2
j .

We introduce the real symmetric matrix

Aij := ρ
−1/2
i Mijρ

1/2
j (5.52)

and the diagonal matrix

∆ij := δij ρ
1/2
i (5.53)

and express the Markov matrix in these quantities

M = ∆A∆−1 . (5.54)

If the spectral representation of A is written as

A = UDUT

then the singular-value decomposition of M reads

M = ∆UDUT ∆−1 = ∆UD(∆−1U)T ,

which we define as

M = XDY T . (5.55)

Obviously, the matrix of right-eigenvalues is

X = ∆ U (5.56)

and the matrix of left-eigenvalues is

Y = ∆−1 U . (5.57)

It should be stressed that the column vectors of X and Y respectively need
not to be normalized to 1 if derived this way. They can, however, easily be
normalized:

M =
∑

l

xl dl yT
l

=
∑

l

1
‖xl‖ xl dl ‖xl‖yT

l .
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Since ‖xl‖ = 1/‖yl‖ the left and right eigenvectors are now normalized.
An immediate consequence of (5.56) and (5.56) is the generally valid property

XT Y = Y T X = 1̂ ; (5.58)

left- and right-eigenvectors are mutually orthogonal. Moreover, combining
(5.56) and (5.57), we derive

X = ∆2 Y and Y = ∆−2X , (5.59)

which is obviously fulfilled for the dominant eigenvalue λ1 = 1, where

xi1 = ρi (5.60a)
yi1 = 1 . (5.60b)

The corresponding eigenvector of A is

ui1 =
√

ρi . (5.61)

The eigenvectors of M do not form an orthogonal set of eigenvectors, the
relation is rather according to (5.58) and (5.59)

1̂ = Y T ∆2Y = XT ∆−2X . (5.62)

Due to the mutual orthogonality of left- and right-eigenvectors (5.58) the
extension of the spectral representation to powers of M applies

Mν = X Dν Y T . (5.63)

If we assume an ergodic Markov process then

λν < 1 ∀ν > 1 . (5.64)

We therefore have again

(Mν)ji −→
ν→∞

X(j, 1) dν
1 Y (i, 1) = ρj (5.65)

that the Markov process converges irrespective of the initial state to the in-
variant distribution. For the following it is expedient to extract the dominant
eigenvalue from the spectral representation of M and to define the matrix

M ′
ji := Mji −X(j, 1) d1 Y (i, 1) =

N∑

l=2

X(j, l) dl Y (i, l) (5.66)

Mji = M ′
ji + ρj , (5.67)

which is equivalent to the substitution of the eigenvalues of M
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d1 → d′1 = 0 , dν → d′ν = dν ∀ν > 2 (5.68)

M ′ = XD′Y T . (5.69)

From (5.66) we readily see that

M ′ν
ji := Mν

ji −X(j, 1) dν
1 Y (i, 1) =

N∑

l=2

X(j, l) dν
l Y (i, l) (5.70)

Mν
ji = M ′ν

ji + ρj , (5.71)

5.4.5 MCM Sample Mean

The sought-for mean

〈
f
〉

=
N∑

i=1

f(ξi) ρ(ξi) (5.72)

is estimated by the MC mean

S =
1
N

N∑
ν=1

f(x̂ν) . (5.73)

In the following text we will simplify the notation by the abbreviations fi =
f(ξi) and ρi = ρ(ξi). Instead of investigating the probability density of the
sample mean S, in analogy with the central limit theorem, we are merely
interested in the lowest moments, namely mean and variance. We start out
with the expectation value of the sample/MC mean

〈
S

〉
=

1
N

N∑
ν=1

〈
f(x̂ν)

〉
(5.74)

=
1
N

N∑
ν=1

N∑

j=1

f(ξj) P (x̂ν = ξj |p0,B) . (5.75)

The Markov chain is started in the initial state x̂0, which is drawn from a
distribution p0, with p0

i = p0(ξi). As a special case, the chain could always
start with the same state, say x̂0 = ξi0 . The argument p0 in the conditioning
part of the probability specifies which initial distribution is being used. We
invoke the marginalization rule of probability theory
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〈
S

〉
=

1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj) P (x̂ν = ξj |x̂0 = xi,B) P (x̂0 = ξi|p0,B)

(5.76)

=
1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj) P (x̂ν = ξj |x̂0 = xi,B) p0
i (5.77)

=
1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj) (Mν)ji p0
i . (5.78)

In the extremely unlikely situation that the initial distribution p0 is equivalent
to the distribution of the underlying physical problem ρ we have

∑

j

Mν
ji p0

j = p0
j = ρj ,

independent of the ’Markov-time’ ν, and expectation value of the sample
mean is identical to the true mean

〈
S

〉
=

N∑

j=1

fj ρj =
〈
f
〉

.

For a general initial state the expectation of the sample mean (5.76) is

〈
S

〉
=

1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj) (Mν)ji p0
i (5.79)

=
1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj)
(

M ′ν
ji + ρj

)
p0

i (5.80)

=
1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj) M ′ν
ji p0

i +
N∑

j=1

f(ξj) ρj (5.81)

=
〈
f
〉

+
1
N

N∑
ν=1

N∑

j=1

N∑

i=1

f(ξj) M ′ν
ji p0

i . (5.82)

Due to the initial distribution there is a bias
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B :=
1
N

N∑
ν=1

N∑

j=1

N∑

i=1

fj M ′ν
ji p0

i (5.83)

=
1
N

N∑

l=2

( N∑

i=1

fj xj,l

)

︸ ︷︷ ︸
f̃l

( N∑
ν=1

dν
l

) ( ∑

i

p0
i yil

)

︸ ︷︷ ︸
p̃0

l

(5.84)

=
1
N

N∑

l=2

f̃l

(
dl

1− dN
l

1− dl

)
p̃0

l . (5.85)

Since dN
l declines exponentially, the leading term for large sample size N is

B =
1
N

N∑

l=2

f̃l

(
dl

1− dl

)
p̃0

l

proportional to 1/N , with

f̃l =
∑

j

fjxjl =
∑

j

fj
√

pjUjl =
∑

j

fjUj1Ujl .

5.4.6 Equilibration

The meaning of equilibration is to ignore the first K steps of the Markov
chain in the sample mean, in other words, p0 is replaced by

p̄0 = MK p0 .

Hence, with

˜̄p0 = Y T p̄0 = Y T MK p0 = Y T X DK Y T p0 = DK Y T p0 = DK p̃0 .

(5.86)

the bias reads now

B =
1
N

N∑

l=2

f̃l

(
d1+K

l

1− dN
l

1− dl

)
p̃0

l , (5.87)

so to leading order the bias is now given by

B =
1
N

N∑

l=2

f̃l

(
d1+K

l

1− dl

)
p̃0

l

and decays exponentially with K, since dl < 1. The convergence is dictated
by the d2, the largest remaining eigenvalue. If the number of Markov steps is
limited, and that is naturally the case, it is therefore expedient to use a certain
fraction of them for equilibration, since the bias is exponentially rather then
by a 1/N behavior suppressed. On the other hand, the variance of the sample
mean increases, if the sample size is reduced, There is a tread-off between
bias reduction and variance reduction.
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5.4.7 Variance of sample mean

〈
S2

〉
=

1
N2

∑

ν,ν′

〈
f(x̂ν)f(x̂ν′)

〉

=
1

N2

∑
ν

〈
f(x̂ν)2

〉
+

2
N2

∑

ν′>ν

〈
f(x̂ν)f(x̂ν′)

〉

=
1

N2

∑

i

f2
i

∑
ν

P (x̂ν = ξi|p0,B)

︸ ︷︷ ︸
=:T1

+
2

N2

∑

i,j

fifj

∑

ν′>ν

P (x̂ν′ = ξj , x̂ν = ξi|p0,B)

︸ ︷︷ ︸
=:T2

.

We evaluate the two terms T1/2 separately.

T1 =
1

N2

∑

i

f2
i

∑
ν

(
ρi + (Mνp0)i

)

=
1
N

∑

i

f2
i ρi +

1
N2

∑

i

f2
i

( ∑
ν

Mνp0)i

)

=
1
N

〈
f2

〉
+

1
N2

N∑

l=2

( ∑

i

f2
i xil

)

︸ ︷︷ ︸
=:f̃2

l

( N∑
ν=1

dν
l

) ( ∑

j

yjl p0
j

)

=
1
N

〈
f2

〉
+

1
N2

N∑

l=2

f̃2
l

(
dl

1− dN
l

1− dl

)
p̃0

l
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T2 =
2

N2

∑

i,j

fifj

N−1∑
ν=1

N∑

ν′=ν+1

P (x̂ν′ = ξj |x̂ν = ξi,B) P (x̂ν = ξi|p0,B)

=
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−ν∑
µ=1

P (x̂µ = ξj |x̂0 = ξi,B) P (x̂ν = ξi|p0,B)

=
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−ν∑
µ=1

(
ρj + Mµ

ji

) (
ρi + (Mνp0)i

)

=
2

N2

( ∑

i

fiρi

)2 N−1∑
ν=1

N−ν∑
µ=1

1

+
2

N2

∑

j

fj ρj

∑

i

fi

N−1∑
ν=1

(Mνp0)i

N−ν∑
µ=1

1

+
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−ν∑
µ=1

Mµ
ji ρi

+
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−ν∑
µ=1

Mµ
ji Mνp0)i

T2 =
N − 1

N

〈
f
〉2

(:= T21)

+
2

N2

〈
f
〉 ∑

i

fi

N−1∑
ν=1

(Mνp0)i (N − ν) (:= T22)

+
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−1∑
µ=1

θ(ν ≤ N − µ)Mµ
ji ρi (:= T23)

+
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−ν∑
µ=1

Mµ
ji (Mνp0)i (:= T24)

The first term needs no further consideration. We proceed with term

T22 =
2

N2

〈
f
〉 ∑

i

fi

N−1∑
κ=1

(κ MN−κp0)i

=
2

N2

〈
f
〉 ∑

l

( ∑

i

fi xil

) ( N−1∑
κ=1

κ dN−κ
l

) (∑

j

yjl p0
j

)

=
2

N2

〈
f
〉 ∑

l

f̃l

( N−1∑
κ=1

κ dN−κ
l

)
p̃0

l
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N−1∑
κ=1

κ dN−κ
l = dN

l

N−1∑
κ=1

κ qκ

∣∣∣∣
q=d−1

l

= dN
l q

∂

∂q

N−1∑
κ=1

qκ

∣∣∣∣
q=d−1

l

= dN
l q

∂

∂q

(
1− qN

1− q
− 1

)∣∣∣∣
q=d−1

l

= dN
l q

(−NqN−1

1− q
+

1− qN

(1− q)2

)∣∣∣∣
q=d−1

l

= dN−1
l

(−Nd
−(N−1)
l

1− 1/dl
+

1− d−N
l

(1− 1/dl)2

)

=
Ndl

1− dl

(
1− 1

N

1− dN
l

1− dl

)
(5.88)

Hence we have

T22 =
2 〈f〉
N

∑

l

f̃l
dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)
p̃0

l (5.89)

Next we compute T23

T23 =
2

N2

∑

i,j

fj

N−1∑
µ=1

(N − µ) Mµ
ji ρi fi

=
2

N2

N∑

l=2

( ∑

j

fj xjl

) ( N−1∑
µ=1

(N − µ) dµ
l

) ( ∑

i

ρi fi yil

)

According to (5.59) (Y = ∆−2X) the last factor can be expressed in terms
of X as

∑
i ρi fi ρ−1

i xil = f̃l. Along with (5.88) we obtain

T23 =
2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)
. (5.90)

Finally, we determine

T24 =
2

N2

∑

i,j

fifj

N−1∑
ν=1

N−ν∑
µ=1

Mµ
ji (Mνp0)i

=
2

N2

N∑

l,l′=2

N−1∑
ν=1

N−ν∑
µ=1

( ∑

j

fj xjl

)
dµ

l

( ∑

i

yil fi xil′

)

︸ ︷︷ ︸
=:Fll′

dν
l′

( ∑

k

ykl′p
0
k

)

=
2

N2

N∑

l,l′=2

f̃l Fll′ p̃0
l′

N−1∑
ν=1

dν
l′

N−ν∑
µ=1

dµ
l
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We need

N−1∑
ν=1

dν
l′

N−ν∑
µ=1

dµ
l =

N−1∑
ν=1

dν
l′

(
dl

1− dl
− dN−ν+1

l

1− dl

)

= dl′
1− dN−1

l′

1− dl′

dl

1− dl
− dN+1

l

1− dl

N−1∑
ν=1

(dl′/dl)ν

=
dldl′

1− dl





1−dN−1
l′

1−dl′
− dN−1

l (N − 1) for dl = dl′

1−dN−1
l′

1−dl′
− dN−1

l
1−(dl′/dl)

N−1

1−dl′/dl
otherwise

.

With the definition

Qll′ :=
dldl′

1− dl





1−dN−1
l′

1−dl′
− dN−1

l (N − 1) for dl = dl′

1−dN−1
l′

1−dl′
− dN−1

l
1−(dl′/dl)

N−1

1−dl′/dl
otherwise

(5.91)

we have

T24 =
2

N2

N∑

l,l′=2

f̃l Fll′ p̃0
l′ Qll′ . (5.92)

Eventually, we have for 〈S2〉
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〈
S2

〉
=

1
N

〈
f2

〉
+

1
N2

N∑

l=2

f̃2
l

(
dl

1− dN
l

1− dl

)
p̃0

l

+
N − 1

N

〈
f
〉2

+
2 〈f〉
N

∑

l

f̃l
dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)
p̃0

l

+
2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)

+
2

N2

N∑

l,l′=2

f̃l Fll′ p̃0
l′ Qll′

〈
S2

〉
=

1
N

〈
(∆f)2

〉
+

〈
f
〉2

+
1

N2

N∑

l=2

f̃2
l

(
dl

1− dN
l

1− dl

)
p̃0

l

+
2 〈f〉
N

∑

l

f̃l
dl

1− dl
p̃0

l −
2 〈f〉
N2

∑

l

f̃l
dl

1− dl

1− dN
l

1− dl
p̃0

l

+
2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)

+
2

N2

N∑

l,l′=2

f̃l Fll′ p̃0
l′ Qll′

In order to compute the variance we subtract

〈
S

〉2

=
(〈

f
〉

+
1
N

N∑

l=2

f̃l

(
dl

1− dN
l

1− dl

)
p̃0

l

)2

=
〈
f
〉2

+
2〈f〉
N

N∑

l=2

f̃l

(
dl

1− dN
l

1− dl

)
p̃0

l +
(

1
N

N∑

l=2

f̃l

(
dl

1− dN
l

1− dl

)
p̃0

l

)2

So the variance reads
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Variance of sample mean

〈
(∆S)2

〉
=

1
N

〈
(∆f)2

〉
+

1
N2

N∑

l=2

f̃2
l

(
dl

1− dN
l

1− dl

)
p̃0

l

+
2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)
+

2
N2

N∑

l,l′=2

f̃l Fll′ p̃0
l′ Qll′

+
2〈f〉
N

N∑

l=2

f̃l
dl

1− dl

(
dN

l − 1
N

1− dN
l

1− dl

)
p̃0

l −
(

1
N

N∑

l=2

f̃l

(
dl

1− dN
l

1− dl

)
p̃0

l

)2

.

The terms independent of p0 are

Variance of sample mean (leading terms)

〈
(∆S)2

〉
=

1
N

〈
(∆f)2

〉
+

2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)

=
1
N

〈
(∆f)2

〉 [
1 + 2

N∑

l=2

f̃2
l

〈(∆f)2〉
dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)]
.

(5.93)

Apart form the O(1/N) term in the last factor, these are also the leading
order terms. The result is equivalent to the approximation

P (x̂ν = ξi|p0,B) ' ρi ,

because in this case all p0-dependent terms vanish, as the dominant eigenvalue
is separated off. So if the MCMC run is properly equilibrated the variance is
given by (5.93). We see that also the variance gets worse, if d2 → 1.

Influence of equilibration on the variance. According to (5.86) we
merely have to replace p̃0

l by dK
l p̃0

l .
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Variance of sample mean after equilibration

〈
(∆S)2

〉
=

1
N

〈
(∆f)2

〉
+

1
N2

N∑

l=2

f̃2
l

(
dK+1

l

1− dN
l

1− dl

)
p̃0

l

+
2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)
+

2
N2

N∑

l,l′=2

f̃l Fll′ dK
l p̃0

l′ Qll′

+
2〈f〉
N

N∑

l=2

f̃l
dK+1

l

1− dl

(
dN

l − 1
N

1− dN
l

1− dl

)
p̃0

l −
(

1
N

N∑

l=2

f̃l

(
dK+1

l

1− dN
l

1− dl

)
p̃0

l

)2

.

Without equilibration, the next to leading terms where of order 1/N smaller.
Now they are exponentially suppressed and the correction to (5.93) is now
exponentially small.

5.4.8 Dominant terms

We consider the case, that additional eigenvalues approach One, i.e. dl = 1−ε.

dN
l = (1− ε)N = 1− εN +

(εN)2

2
− (εN)3

6
+ O(εN)4

1
N

1− dN
l

1− dl
= 1− (εN)

2
+

(εN)2

6
+ O(εN)3)

⇒

1− 1
N

1− dN
l

1− dl
=

(εN)
2

(
1− εN

3
+ O(εN)2)

)

⇒

dN
l − 1

N

1− dN
l

1− dl
= − (εN)

2

(
1− 2εN

3
+ O(εN)2

)
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Contribution to Variance of sample mean
from dominant terms for εN < 1 and N À 1

∆
〈
(∆S)2

〉
=

1
N

N∑

l=2

f̃2
l dK+1

l

(
1− εN

2

)
p̃0

l

+
N∑

l=2

f̃2
l

(
1− εN

3

)
+

2
N2

N∑

l,l′=2

f̃l Fll′ dK
l p̃0

l′ Qll′

− 〈f〉
N∑

l=2

f̃l dK+1
l

(
1− 2εN

3

)
p̃0

l

−
( N∑

l=2

f̃l dK+1
l

(
1− εN

2

))2

.

Qll′

{
N2

2 (1 + 2εN
3 ) dl = d′l = 1− ε

O(N) otherwise

Ignoring terms of order O( 1
N ),O(εN) and O(εK) and assuming there is one

dominant term, we obtain

∆
〈
(∆S)2

〉
= f̃2

l + f̃l Fll′ dK
l p̃0

l′ − 〈f〉
N∑

l=2

f̃l p̃0
l −

(
f̃l

)2

= f̃l Fll′ dK
l p̃0

l′ − 〈f〉
N∑

l=2

f̃l p̃0
l .

If on the other hand p̃0
l = 0, which might be achieved by symmetry consid-

erations, the entire variance simplifies to
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Variance of sample mean for p̃0
l = 0

εN < 1 and N À 1

〈
(∆S)2

〉
=

1
N

〈
(∆f)2

〉
+

2
N

N∑

l=2

f̃2
l

dl

1− dl

(
1− 1

N

1− dN
l

1− dl

)

=
1
N

〈
(∆f)2

〉
+

dom. terms∑

l

f̃2
l

(
1−O(εN)

)

'
dom. terms∑

l

f̃2
l .

Hence the variance is for sufficiently large N independent of N . There is no
1/N reduction. The meaning is that given an appropriate p0 which does not
couple to the next-dominant eigenvalue 1 yields the correct mean, in the sense
as mean value over several independent MCMC runs whose initial state is
distributed according to p0. But the mean variance is finite and independent
of N .
The mean over several independent bins, i.e.

SMb =
1

NM

N∑
ν=1

M∑

b=1

x̂b
ν

yields

〈SM b〉 = 〈S1 b〉

and

〈(∆SM b)2〉 =
1
M
〈(∆S1 b)2〉 .

5.4.9 Behavior of autocorrelation

We start out with the autocorrelation without normalization

A(τ) =
1
N

∑
ν

f(x̂ν+τ )f(x̂ν)

The mean value is
1 not the once with eigenvalue pi
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〈
A(τ)

〉
=

1
N

∑
ν

〈
∆f(x̂ν+τ )∆f(x̂ν)

〉

=
1
N

∑

i,j

∆fi∆fj

∑
ν

P (x̂ν+τ = ξj |x̂ν = ξi, p
0,B) P (x̂ν = ξi|x̂0 = ξk, p0,B) p0(ξk)

=
1
N

∑

i,j

∆fi∆fj

∑
ν

(Mτ )ji

∑

k

(Mν)ik p0
k

=
1
N

∑

i,j

∆fi∆fj

∑
ν

(
(M ′τ )ji + ρj

) ( ∑

k

(M ′ν)ik p0
k + ρi

∑

k

p0
k

)

=
1
N

∑

i,j

∆fi∆fj

∑
ν

(
(M ′τ )ji + ρj

) (
(M ′ν p0)i + ρi

)

=
1
N

∑

i,j

∆fi∆fj

∑
ν

(
(M ′τ )ji(M ′ν p0)i + (M ′τ )jiρi + ρj(M ′ν p0)i + ρjρi

)

=
1
N

∑

i,j

∆fi∆fj (M ′τ )ji

( ∑
ν

M ′ν p0

)

i

+
N

N

∑

j,i

∆fj (M ′τ )jiρi ∆fi

+
1
N

( ∑

j

∆fjρj

)

︸ ︷︷ ︸
=0

∑

i

∆fi

( ∑
ν

M ′ν p0

)

i

+
N

N

( ∑

i

∆fiρi

)( ∑

j

∆fj ρj

)

︸ ︷︷ ︸
=0

Leading to

〈
A(τ)

〉
=

∑

j,i

∆fj (M ′τ )jiρi ∆fi

︸ ︷︷ ︸
T1

+ 1
N

∑

i,j

∆fi∆fj (M ′τ )ji

( ∑
ν

M ′ν p0

)

i︸ ︷︷ ︸
T2

.

T1 =
∑

j,i

∆fj (M ′τ )jiρi ∆fi

=
N∑

l=2

dτ
l

[( ∑

j

∆fjXjl

)( ∑

i

ρi∆fiYil

)]
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T2 = 1
N

∑

i,j

∆fi∆fj (M ′τ )ji

( ∑
ν

M ′ν p0

)

i

= 1
N

∑

i,j

∆fj (M ′τ )ji

(
X

1−D′N

1−D′ Y T p0

)

i

∆fi

︸ ︷︷ ︸
gi

=
N∑

l=2

dτ
l

[( ∑

j

∆fjXjl

)(
1
N

∑

i

giYil

)]

So the final result has the form

〈
A(τ)

〉
=

N∑

l=2

e−l/ξl cl

with

ξl = |1/ln(dl)| (5.94)

5.4.10 Example

The presumably most simple example is given by an electron moving along
1d lattice of length N . The possible states are the positions i ∈ {1, 2, . . . , N}
with probability ρi. The current state be xn = i. As proposal distribution we
choose left right moves, i.e. xT = i± 1 with pbc, or more precisely

q(i|i) =
1
2
(
δj,[i+1,N ] + δj,[i−1,N ]

)
.

The symbol [i,N ] indicates pbc

[i,N ] =





1 if i > N

N if i < 1
i otherwise

According to (5.46) we generally have

Mji = α(j|i)q(j, i) + δji(1−
∑

k

α(k|i)q(k, i)) ,

which in the present case becomes

Mji =
1
2
min

(
1,

ρj

ρi

)(
δj,[i+1,N ] + δj,[i−1,N ]

)
+ δjiZi

=
1
2

[
min

(
1,

ρ[i+1,N ]

ρi

)
δj,[i+1,N ] + min

(
1,

ρ[i−1,N ]

ρi

)
δj,[i−1,N ]

]
+ δjiZi ,
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where Zi ensures the proper normalization. To keep things simple we consider
a flat distribution ρi = 1/N , which leads to

Mji =
1
2

[
δj,[i+1,N ] + δj,[i−1,N ]

]
.

Here, Zi = 0, which implies that moves are always accepted because
α(i± 1|i) = min(1, 1) = 1. This is simply the 1d tight-binding matrix with
pbd. It is symmetric, i.e. left eigenvectors and right eigenvectors are identi-
cal, i.e. X = Y . The well-known eigenvalues are εk = cos((k− 1)2π/N), with
(k = 1, . . . , N). The corresponding eigenvectors are

Xjk =
1√
N

ei(k−1)j , j = 1, 2, . . . , N .

The dominant eigenvalue is εk=1 = 1. The next dominant eigenvalues are
given for k = 2 and k = N with

ε = cos(2π/N) ≈ 1− 1
2 (2π/N)2 .

The corresponding correlation length given by (5.94) is ξ = N2/(2π2). The
result is very reasonable, as we are studying a random walk for which the
mean distance, moved in t steps, is

√
t. In order to traverse the lattice once,

i.e. to cover a mean distance N it takes N2 steps (time units).



6. Quantum Monte Carlo Methods (QMC)

If the exact diagonalization of the Hamiltonian is possible, a MCMC method
can be applied brut force and no further considerations are necessary. The
thermodynamic expectation of an observable O is then calculated as a trace
in the complete eigenbasis of the Hamiltonian, denoted by |n〉. It is given by

< O >T =
1
Z

tr(Ôe−βĤ) =
1
Z

∑∫

n

〈n|Ô|n〉 exp(−βHn) (6.1)

with the canonical partition function

Z =
∑∫

n

exp(−βHn) . (6.2)

In the general case where no exact diagonalization of the Hamiltonian is pos-
sible, the trace has to be evaluated in a different basis. Then the expectation
value reads

< O >T =
1
Z

tr(Ôe−βĤ) =
1
Z

∑∫

n,m

〈n|Ô|m〉〈m| exp(−βĤ)|n〉 , (6.3)

where we have inserted a complete set |m〉. The term 〈m| exp(−βĤ)|n〉 in
the above formula causes several difficulties

• its evaluation is not simple,
• it can change sign depending on the vectors |n〉, |m〉,
• it is not normalized to one, i.e. does not represent a probability distribu-

tion.

The reason for all these shortcomings is found in the appearance of non-
vanishing commutators. We try to eliminate them by mapping the quantum
mechanical problem on a classical problem. This mapping is achieved by the
Suzuki–Trotter decomposition presented in what follows.

6.1 Suzuki–Trotter–Decomposition

In principle, the Suzuki–Trotter decomposition maps a d dimensional quan-
tum mechanical problem on a d + 1 dimensional classical problem. The ad-
ditional dimension introduced by the mapping is called an artificial time or
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Trotter–time. We present the decomposition for a sum of only two operators
A and B. Extension to the case of n operators is straight forward. Thus,
suppose that the Hamiltonian is given by the sum

Ĥ = Â + B̂ , with [Â, B̂] 6= 0 . (6.4)

The operators Â and B̂ do not commute and we assume that their individual
diagonalization is possible. If the commutator of Â and B̂ vanished, we could
use the formula

e−β(Â+B̂) = e−βÂ e−βB̂ , for [Â, B̂] = 0 (6.5)

and insert a common complete set of eigenstates. However, in our case of non-
vanishing commutators, the exponential function does not simply decompose
into a product. We introduce an error R writing

e−β(Â+B̂) = e−βÂ e−βB̂ + R , with R = −β2

2
[Â, B̂] + O(β3) . (6.6)

Proof: We expand both, LHS and RHS of (6.6) in Taylor series retaining
only the leading three terms. This yields

e−β(Â+B̂) = 1− β(Â + B̂) +
β2

2
(Â2 + B̂2 + 2ÂB̂ + [B̂, Â]) + O(β3),

e−βÂ e−βB̂ = (1− βÂ +
β2

2
Â2)(1− βB̂ +

β2

2
B̂2)

= 1− β(Â + B̂) +
β2

2
(Â2 + B̂2 + 2ÂB̂) + O(β3) .

Comparing the RHS’s of the above equations, we obtain the estimate for the
error R in (6.6) with the accuracy of O(β3). 2

Thus, the error has the form of a product of the two operators Â and B̂
multiplied by β2/2. If tA, tB denote the order of magnitude of the operator
Â and B̂, respectively, the error is of the order

R ≈ β2

2
O(tA tB) . (6.7)

In the case of the Hubbard model with its Hamiltonian

Ĥ = −t
∑

<i,j>

c†i cj + h.c. + U
∑

i

ni↑ni↓ (6.8)

the quantity tA corresponds to t whereas tB corresponds to U . Therefore,
one cannot argue that tA and tB have really small values. As a result, when
applying (6.6), the error R will be of order unity. An improved decomposition
is given by the symmetrized form

e−β(Â+B̂) = e−
β
2 Â e−βB̂ e−

β
2 Â +

β3

24
O(tA tB max(tA, tB)) . (6.9)
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But even here, for the same reason, the error will be of order unity.
The Suzuki–Trotter decomposition proceeds with a trick. It takes advantage
of the formula

e−βĤ =
(
e

β
m Ĥ

)m

, for any m ∈ N . (6.10)

The quantity β
m in (6.10) can be made as small as desired by increasing the

number m. And this same quantity β
m appears in the error estimate. Thus

e−βĤ =
(

e
β

2m Âe
β
m B̂e

β
2m Â︸ ︷︷ ︸

C

+R
)m

= Cm + mCm−1R +
m(m− 1)

2
Cm−2R2 + . . . (6.11)

= Cm + mCm−1O
(( β

m

)3)
+ m2Cm−2O

(( β

m

)6)

The leading correction is of the order β O(
(

β
m

)3) and rewriting the power m
as a product we obtain

e−βĤ =
m∏

τ=1

e
β

2m Â e
β
m B̂e

β
2m Â + O

(( β

m

)2

β
tAtB
24

max(tA, tB)
)

. (6.12)

The new quantity τ is called the Trotter time or imaginary time. The integer
m must be made big enough to assure that the correction term in (6.12) is
small.
Since the trace is invariant against cyclic permutation, the partition function
Z is approximately given by

Z = tre−βĤ = tr
m∏

τ=1

e
β
m Â e

β
m B̂ . (6.13)

The decomposition of the exponential function is now achieved. However, the
price to be paid is an additional coordinate τ that apears as imaginary time.
There is a variety of methods using higher order decompositions for the ex-
ponential function e−βĤ . Unfortunaltely, they contain commutators [Â, B̂]
that are not always cheaply obtained. Suzuki himself suggested to choose a
fractal decomposition, i.e. a decomposition with fractal coefficients to miti-
gate the sign problem of fermionic systems. A variant of the Suzuki–Trotter
decomposition is the basis of most of the QMC algorithms.

6.2 World Lines Monte Carlo

The underlying idea of the World Lines Monte Carlo method is to decompose
a model Hamiltonian, say of Hubbard or Heisenberg type, into commuting
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pieces. We illustrate this strategy by means of a one-dimensional Hamiltonian
with nearest neighbour interaction. This operator can be split as

H =
∑

i

Hi,i+1 = Ho + He =
∑

i=odd

Hi,i+1 +
∑

i=even

Hi,i+1 . (6.14)

It is easily checked that all commutators constituting the operators Ho and
He vanish:

[Hi,i+1,Hj,j+1] = 0 for i, j even, or i, j odd . (6.15)

The Hamiltonian matrix thus decomposes in small blocks. The size L of these
blocks depends on the model. In the case of the spin–1

2 Heisenberg model, as
well as for the Hubbard model, L = 2 in one spatial dimension.

6.2.1 Heisenberg Model in One Dimension

We investigate a generalized Heisenberg model including far–ranging inter-
actions. The Hamiltonian reads

H = −Jz

∑

i

Sz
i Sz

i+1 −
J

2

∑

i

(
S+

i S−i+1 + S−i S+
i+1

)−
∑

i,j

JijS
z
i Sz

j . (6.16)

The generalization of the Heisenberg model, i.e. the third term on the RHS
of the above equation, causes no complications because it is diagonal in a
the basis of the z–component of the spins. We decompose the Hamiltonian
H into

H = He +
1
2
H ′ + Ho +

1
2
H ′ , (6.17)

where He and Ho refer to terms with even/odd index of the first two terms
of (6.16). The symbol H ′ denotes the third term of (6.16), i.e. it represents
the introduced generalization. Now we apply the Trotter decomposition of
the canonical partition function Z

Z = tr e−βH = tr
m∏

τ=1

exp{− β

m
(Ho +

1
2
H ′)} exp{− β

m
(He +

1
2
H ′)}

= tr
m∏

τ=1

exp{− β

4m
H ′} exp{− β

m
Ho} exp{− β

4m
H ′} (6.18)

× exp{− β

4m
H ′} exp{− β

m
He} exp{− β

4m
H ′} .

It is obvious that the third and the fourth exponential function can be sum-
marized to one factor. Furthermore, exchanging the factors cyclically does
not change the trace. Therefore, we combine the first and the last factor
writing
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Z = tr
m∏

τ=1

exp{− β

2m
H ′} exp{− β

m
Ho} exp{− β

2m
H ′} exp{− β

m
He} . (6.19)

To calculate the trace we insert 2m complete sets of eigenfunctions
∑

σ
(i)
1 ...σ

(i)
N

∣∣σ(i)
〉〈

σ(i)
∣∣ , i = 1 . . . 2m (6.20)

of the operators Sz
i . The partition function Z reads

Z =
∑

σ

〈
σ(1)

∣∣e− β
m Hoe−

β
2m H′∣∣σ(2)

〉〈
σ(2)

∣∣e− β
m Hee−

β
2m H′∣∣σ(3)

〉

〈
σ(3)

∣∣e− β
m Hoe−

β
2m H′ ∣∣σ(4)

〉〈
σ(4)

∣∣e− β
m Hee−

β
2m H′∣∣σ(5)

〉
(6.21)

...
...

...
...

...〈
σ(2m−1)

∣∣e− β
m Hoe−

β
2m H′∣∣σ(2m)

〉〈
σ(2m)

∣∣e− β
m Hee−

β
2m H′ ∣∣σ(1)

〉
.

We can now explicitly calculate the exponentials of H ′ because this operator
is diagonal. Terms with superscript k yield

e−
β

2m H′∣∣σ(k)
〉

= e−
β

2m

(
−∑

i,j Jij
1
4 σ

(k)
i σ

(k)
j

)∣∣σ(k)
〉

= e
β

8m V (σ(k))
∣∣σ(k)

〉
(6.22)

with the abbreviation V (σ(k)) =
∑

i,j Jij σ
(k)
i σ

(k)
j . Thus, the partition func-

tion reads

Z =
∑

exp

{
β

8m

2m∑
τ=1

V (σ(τ))

}

×
m∏

τ=1

〈
σ(2τ−1)

∣∣e− β
m Ho

∣∣σ(2τ)
〉〈

σ(2τ)
∣∣e− β

m He
∣∣σ(2τ+1)

〉
.

(6.23)

The trace induces periodic boundary conditions in the Trotter time implying
the relation

∣∣σ(2m+1)
〉

=
∣∣σ(1)

〉
. Therefore, in order to proceed, we have to

calculate the matrix elements containing the exponentials of the even/odd
part of the Hamiltonian.

〈σ|e− β
m He/o |σ′ 〉 = 〈σN . . . σ1|

e/o∏

i

e−
β
m Hi,i+1 |σ′1 . . . σ′N 〉 (6.24)

The operator Hi,i+1 affects only the spins i and i+1. Thus it can be written
in the two-spin basis |si, si+1〉. To this end, only the 2× 2 matrix elements

Ai,i+1(si+1, si, s
′
i, s

′
i+1)

def=
〈
si+1si

∣∣e− β
m Hi,i+1

∣∣s′is′i+1

〉
(6.25)

have to be evaluated and, conversely, yield
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e−
β
m Hi,i+1 =

∑

si+1,si,s′i,s
′
i+1

∣∣si, si+1

〉
Ai,i+1(si+1, si, s

′
i, s

′
i+1)

〈
s′i+1, s

′
i

∣∣ . (6.26)

By inserting this representation into (6.24), we obtain
〈
σ
∣∣∣e− β

m He/o

∣∣∣σ′
〉

(6.27)

=
〈
σN . . . σ1

∣∣∣
e/o∏

i

∑
si+1,si

s′i,s
′
i+1

∣∣si, si+1

〉
Ai,i+1(si+1, si, s

′
i, s

′
i+1)

〈
s′i+1, s

′
i

∣∣
∣∣∣σ′1 . . . σ′N

〉
.

Since each index appears only once at each side, for nonvanishing matrix
elements we have to satisfy the condition

si = σi and s′i = σ′i

for all i. Therefore, the sum simplifies to
〈
σ
∣∣∣e− β

m He/o

∣∣∣σ′
〉

(6.28)

=
〈
σN . . . σ1

∣∣∣
e/o∏

i

|σi, σi+1〉Ai,i+1(σi+1, σi, σ
′
i, σ

′
i+1)

〈
σ′i+1, σ

′
i

∣∣
∣∣∣σ′1 . . . σ′N

〉

or equivalently

=
e/o∏

i

Ai,i+1(σi+1, σi, σ
′
i, σ

′
i+1)

×
〈
σN . . . σ1

∣∣∣
e/o∏

i

|σi, σi+1〉
〈
σ′i+1, σ

′
i

∣∣
∣∣∣σ′1 . . . σ′N

〉

︸ ︷︷ ︸
S(σ,σ′)

.

By re-inserting the definition of A (6.25), we obtain

〈
σ

∣∣∣e− β
m He/o

∣∣∣ σ′
〉

= S(σ, σ′)
e/o∏

i

〈σi+1σi|e−
β
m Hi,i+1

∣∣σ′iσ′i+1

〉
. (6.29)

In general, the quantity S can either be S = +1 or S = −1 depending on
the number of permutations necessary to pair corresponding creation and
annihilition operators. The case S = −1 causes non-local sign problems that
typically complicate WLMC simulations for fermionic systems. In our case of
the Heisenberg model, we only have to deal with spin operators. Fortunately,
spin operators at different sites commute. Therefore permutations do not
yield minus signs and S ≡ 1.
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We continue by evaluating the 2×2 matrix elements (6.25). Upon introducing
the abbreviation

M
def= − β

m
Hi,i+1 =

β

m
JzS

z
i Sz

i+1 +
β

m

J

2
Fi (6.30)

with the Flip operator Fi, they are calculated in a straight forward manner.
The results are summarized in Table 6.1. We want to evaluate the exponential

σiσi+1/σ′iσ
′
i+1 (↑↓) (↓↑) (↑↑) (↓↓)

(↑↓) −βJz
4m

βJ
2m

0 0

(↓↑) βJ
2m

−βJz
4m

0 0

(↑↑) 0 0 βJz
4m

0

(↓↓) 0 0 0 βJz
4m

Table 6.1.
Ma-
trix
el-
e-
ments
of
the
one-
dimensional
Heisen-
berg
model

of M , i.e. eM . For this end it is convenient to apply the spectral theorem.
Thus, we need the eigenvalues λi and eigenvectors xi. They are given by

x1 =




0
0
0
1


 , λ1 =

βJz

4m
x2 =




0
0
1
0


 , λ2 =

βJz

4m

x3 =
1√
2




1
1
0
0


 , λ3 = −βJz

4m
+

βJ

2m

x4 =
1√
2




1
−1

0
0


 , λ4 = −βJz

4m
− βJ

2m
.

(6.31)

Thus using the spectral theorem, we obtain

eM =
4∑

i=1

eλixix
†
i =




e−
βJz
4m ch e−

βJz
4m sh 0 0

e−
βJz
4m sh e−

βJz
4m ch 0 0

0 0 e
βJz
4m 0

0 0 0 e
βJz
4m


 . (6.32)
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The new symbols ch and sh represent

ch = cosh
( βJ

2m

)
, sh = sinh

( βJ

2m

)
. (6.33)

We can simplify the above expressions by splitting off an exponential factor
and reducing it to a 2× 2 block matrix. This matrix will be denoted by w.

eM = e
βJz
4m


 e−

βJz
2m

(
ch sh
sh ch

)
O2

O2 I2




= e
βJz
4m w

(
σi, σi+1, σ

′
i, σ

′
i+1

)
. (6.34)

We conclude that, for N spins, the matrix elements are products of the form

〈σ|e− β
m He/o |σ′ 〉 =

e/o∏

i

e
βJz
4m w

(
σi, σi+1, σ

′
i, σ

′
i+1

)

= e
βJz
4m

N
2

e/o∏

i

w
(
σi, σi+1, σ

′
i, σ

′
i+1

)
. (6.35)

Inserting the obtained result into (6.23), the partition function Z becomes

Z =
∑
σi

e
β

8m

∑
jV

(
σ(j)

) m∏
τ=1

〈
σ(2τ−1)

∣∣e− β
m Ho

∣∣σ(2τ)
〉〈

σ(2τ)
∣∣e− β

m He
∣∣σ(2τ+1)

〉

=
∑
σi

e
β

8m

∑
j V

(
σ(j)

)
e

βJz
8m 2mN

m∏
τ=1

odd∏

i

w
(
σ

(2τ−1)
i , σ

(2τ−1)
i+1 , σ

′(2τ)
i , σ

′(2τ)
i+1

)

×
even∏

i

w
(
σ

(2τ)
i , σ

(2τ)
i+1 , σ

′(2τ+1)
i , σ

′(2τ+1)
i+1

)
.

We observe that most of the elements of the matrix w, namely 10 out of
16 are zero. This is a consequence of form of the Flip operator and of the
preservation of the z–component of the integral spin. If both spins i and
i + 1 point in the same direction, Fi reduces the state to zero. Therefore it is
convenient to introduce the notion of active plaquettes. Imagine a spin ↑ at
the site i=odd and Trotter–time τ=odd. Where will this spin ↑ be found at
time τ + 1 ? The answer depends on the matrix w and thus on the state of
the spin i + 1 at time τ . If spin i + 1 is also a ↑ state, the only possibility is
that at time τ + 1 the same state occurs. This is due to the w33 = 1 (third
column and third row of the matrix w). If, however, spin i + 1 is in the ↓
state at time τ , the two spins can either be flipped (w12 6= 0) or keep their
orientations (w11 6= 0). In general the two possibilities have different weight.
Notice that the fate of spin i is independent of spin i − 1. The same is true
for an even Trotter–time τ and an even site i. Conversely, if τ is odd and i is
even or if τ is even and i is odd, the ”evolution” of this spin depends on the
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Fig. 6.1. The Checker Board for the Suzuki-Trotter decomposition of the Canonical
Partition function of eight spins in the Heisenberg model

orientation of spin i − 1. This situation can be visualized with the checker
board of black and white fields. A spin is located at each corner of a field.
Black fields are called active plaquettes because spins that are coupled via
black fields influence each other.
We introduce an intermediate notation depicting sites of spin ↑ with filled
circles and sites with spin ↓ with open circles. The discussion can be reduced
to investigating one active plaquette. There are several possible configura-
tions shown in Fig. 6.2. The weights for each configuration are inferred from

weight: gs = exp(-) cosh()

weight: gd = exp(-) sinh ()

weight: 1

PSfrag replacements

weight: gs = e−
βJz
2m cosh

(
βJ
2m

)

weight: gd = e−
βJz
2m sinh

(
βJ
2m

)
weight: 1

Fig. 6.2. Weights of the six different configurations of an active plaquette

the matrix w. Since the z–component of the spin is a conserved quantity,
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the number of filled circles at the base line of the active plaquette must be
the same as at the top. A more common visualization is to join spin ↑ sites
with lines. These are the so called world lines. Spin ↓ sites are not mentioned
any more. As can be deduced from Fig. 6.2, world lines can run in diagonal

weight: gs = exp(-) cosh()

weight: gd = exp(-) sinh ()

weight: 1

PSfrag replacements

weight: gs = e−
βJz
2m cosh

(
βJ
2m

)

weight: gd = e−
βJz
2m sinh

(
βJ
2m

)
weight: 1

Fig. 6.3. World line visualization of the six different configurations of an active
plaquette

direction only on active plaquettes. Furthermore, it is common to join spin
↑ sites with straight lines whenever this is possible. Thus, active plaquettes
with four spin ↑ sites are visualized with two straight world lines. Due to the
conservation of Sz, world lines cannot be interrupted anywhere. As a conse-
quence of the trace in the partition function, periodic boundary conditions
in the Trotter time have to be applied. Additionally, we can choose periodic
boundary conditions in real space. The canonical partition function Z can be
written as a sum over all world–line configurations W . One such world–line
configurations W contributes with the statistical weight ρ(W ) given by

ρ(W ) = gns
s gnd

d , (6.36)

where the integers ns and nd count the numbers of active plaquettes occupied
by one straight / diagonal piece of a world line, respectively. The preservation
of Sz on each active plaquette implies that the number of the world lines
remains constant. The partition function thus reads

Z =e
βJzN

4

∑

W

exp
{ β

8m

∑

i,j

Jij

∑
τ

σ
(τ)
i σ

(τ)
j

}
gns

s gnd

d

=e
βJzN

4

∑

W

exp
{ β

8m

∑

i,j

Jij

∑
τ

σ
(τ)
i σ

(τ)
j

}
ρ(W ) .

(6.37)

The thermodynamical expectation of the energy E can be inferred from the
partition function through differentiation. This is outlined for the general
case in Sec. 6.2.3. In the one–dimensional case the thermal energy is given by
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E =< H > =
1

tr(e−βH)
tr

(
H e−βH

)
= − ∂

∂β
log Z

= −Jz

(N

4
− 1

2m

(
< ns > + < nd >

))
(6.38)

−J
1

2m

(
tanh

(βJz

2m

)
< ns > +coth

(βJz

2m

)
< nd >

)

where < ns > and < nd > denote the average number of straight and diag-
onal plaquettes, respectively. The long ranging spin–spin correlations can be
evaluated through differentiation

< Sz
i Sz

j >=
1
β

∂

∂Jij
log Z

∣∣∣
H′=0

=
1

8m

∑

W

ρ(W )
2m∑
τ=1

σ
(τ)
i σ

(τ)
j (6.39)

This formula is valid even for the case H ′ = 0 and can thus also be applied
to the original Heisenberg model without long-rangin interactions.

6.2.2 Higher Spatial Dimensions

In higher dimensions (d = 2 or 3), the Trotter decomposition has to be car-
ried out for each direction separately. Instead of the one–dimensional chain,
we consider a cubic lattice of N sites. We have to take into account the
contributions of the nearest neighbour interaction in each spatial direction
(Hx, Hy,Hz). In the two-dimensional case, for instance, a possible breakup
of the Hamiltonian reads

H = Hx + Hy = Hex + Hox + Hey + Hoy , (6.40)

with He/ox,He/oy denoting the even and odd part of the interaction in x−
and y− direction, respectively. Often, a more symmetric decomposition like

H =
1
2

Hex + Hox +
1
2

Hex +
1
2

Hey + Hoy +
1
2

Hey (6.41)

can be convenient. To cover the general case, we introduce the symbol Nb de-
noting the number of components of the decomposition. The Suzuki–Trotter
approximation of one Trotter slice is then given by the product

e−
β
m H ≈

Nb∏

b=1

e−∆τbHb , (6.42)

with time intervals ∆τb. When using the decomposition stated in (6.40),
we find Nb = 4 and all ∆τb = β/m. The operators Hb are given by
H1 = Hxe,H2 = Hxo,H3 = Hye and H4 = Hyo, respectively. On the
other hand, choosing the symmetric form of (6.41), we have Nb = 6 and
∆τ2 = ∆τ5 = β/m whereas ∆τ1 = ∆τ3 = ∆τ4 = ∆τ6 = β/(2m). In this case,
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the operators Hb are given by H1 = H3 = Hxe,H2 = Hxo,H4 = H6 = Hye

and H5 = Hyo. The sum over all ∆τb equals

Nb∑

b=1

∆τb =
β

m

Nb∑

b=1

fb = 2
β

m
d . (6.43)

The new symbols fb are defined as ∆τb
def= fb β/m. Therefore, the partition

function Z reads in Suzuki–Trotter approximation

Z ≈ tr
m∏

τ=1

Nb∏

b=1

e−∆τbHb . (6.44)

To evaluate the trace, we use a collection of m×Nb sets of complete bases S
labelled by l. When using cyclic boundary conditions, S(mNb+1) = S(1), and
the function l(τ, b) = τ Nb + b we obtain

Z ≈
∑

S(1)...S(mNb)

m∏
τ=1

Nb∏

b=1

〈
S(l)

∣∣e−∆τbHb
∣∣ S(l+1)

〉
. (6.45)

Now we can evaluate each matrix element in the same way as outlined for
the one-dimensional case. Since the Hamiltonians Hb consist of sums of com-
muting operators, the exponential exp(−∆τbHb) factorizes. As in the one–
dimensional case, each Hb consists of N/2 terms. The resulting factors can
be cast in the form

e
∆τb
4 Jz


 e−

Jz∆τb
2

(
cosh(∆τbJ/2) sinh(∆τbJ/2)
sinh(∆τbJ/2) cosh(∆τbJ/2)

)
O2

O2 I2


 . (6.46)

When inserting this matrix into the matrix element of (6.45), we obtain the
structure of active plaquettes. Since Hb consists of N/2 terms, each Trotter
slice comprises N/2 active plaquettes per direction b. From (6.46) we see
that we can split off the common factor exp(∆τbJz/4). Upon introducing the
b dependent plaquette weights

gs,b = e−∆τbJz/2 cosh
(|∆τbJ/2|)

gd,b = e−∆τbJz/2 sinh
(|∆τbJ/2|) ,

(6.47)

as well as the numbers ns(b, τ) and nd(b, τ) of straight and diagonal plaquettes
of one direction b within one Trotter slice τ we obtain

Z ≈
∑

S(1)...S(mNb)

m∏
τ=1

Nb∏

b=1

e
Jz
4

N
2 ∆τb g

ns(b,τ)
s,b g

nd(b,τ)
d,b

= e
Jz
4

N
2

∑
τ

∑
b ∆τb

∑

S(1)...S(mNb)

Nb∏

b=1

g
∑

τ ns(b,τ)
s,b g

∑
τ nd(b,τ)

d,b . (6.48)
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By using (6.43) we simplify the two sums of the first exponential. By abbre-
viating the sums occurring in the other exponentials by ns(b) =

∑
τ ns(b, τ)

and nd(b) =
∑

τ nd(b, τ), respectively, we obtain the final result

Z = e
βJz
4 Nd

∑

W

Nb∏

b=1

g
ns(b)
s,b g

nd(b)
d,b . (6.49)

Instead of extending the sum over all spin configurations, we now sum over all
possible world-line configurations W . The two summations are equivalent, be-
cause each spin configuration maps uniquely to one world line configuration.
From (6.49) we infer that the statistical weight of a world–line configuration
W is given by

ρ(W ) =
Nb∏

b=1

g
ns(b)
s,b g

nd(b)
d,b . (6.50)

As we have seen, in higher spatial dimensions the trace of the partition func-
tion Z cannot be simplified with cyclic permutations to the same extent as in
one dimension. The weights gs and gd become time–dependent as they vary
periodically with the Trotter time τ . Additionally, the Trotter slices become
more extended. The same phenomena occur for long ranging interactions.

6.2.3 Correlations, Energy

In the field of statistical mechanics, many expectation values can be derived
from the partition function by means of differentiation. Among these observ-
ables we find the thermal (internal) energy and – for spin systems – correla-
tion functions. Therefore, we now discuss the differentiation of the logarithm
of (6.49) with respect to Jz and J . This logarithm is given by

log Z =
βJz

4
Nd + log

(∑

W

∏

b

g
ns(b)
s,b g

nd(b)
d,b

)
. (6.51)

Let’s start with the simpler case, namely with the differentiation with respect
to Jz. By exploiting the identity (log f)′ = f ′/f and exchanging the order of
summation and differentiation, we obtain

∂ log Z

∂Jz
=

β

2
Nd +

∑
W

∂
∂Jz

∏
b g

ns(b)
s,b g

nd(b)
d,b∑

W

∏
b g

ns(b)
s,b g

nd(b)
d,b

. (6.52)

From the definition of the plaquette weights (6.47) we derive that the product
over b can be cast into the form
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∏

b

g
ns(b)
s,b g

nd(b)
d,b (6.53)

=
∏

b

(
e−

∆τbJz
2

)ns(b)+nd(b)

coshns(b)
(|∆τbJ

2
|) sinhnd(b)

(|∆τbJ

2
|)

= e−
Jz
2

∑
b ∆τb(ns(b)+nd(b))

∏

b

coshns(b)
(|∆τbJ

2
|) sinhnd(b)

(|∆τbJ

2
|) .

The arguments of the hyperbolic functions do not depend on Jz. Thus, dif-
ferentiation with respect to Jz affects only the exponential part of the above
expression and yields

∂

∂Jz

∏

b

g
ns(b)
s,b g

nd(b)
d,b = −1

2

( ∑

b

∆τb(ns(b)+nd(b))
) ∏

b

g
ns(b)
s,b g

nd(b)
d,b . (6.54)

We find that the statistical weight is of the world-line configuration is repro-
duced by the differentiation. By inserting the above expression into (6.52)
and using the definition of (6.50) we finally find

∂ log Z

∂Jz
=

β

4
Nd− 1

2

∑
W ρ(W ) (

∑
b ∆τb(ns(b) + nd(b)))∑
W ρ(W )

=
β

4
Nd− 1

2

∑

b

∆τb (< ns(b) > + < nd(b) >)

=
β

4
Nd− β

2m

∑

b

fb (< ns(b) > + < nd(b) >) . (6.55)

Now let’s consider the differentiation of (6.51) with respect to J . Obviously,
the first term cancels because it does not depend on J . Remains the product

∂ log Z

∂J
=

∑
W

∂
∂J

∏
b g

ns(b)
s,b g

nd(b)
d,b∑

W

∏
b g

ns(b)
s,b g

nd(b)
d,b

(6.56)

whose evaluation involves the derivatives of the plaquette weights g with
respect to J . By using (6.47) we find

∂gs,b

∂J
=

∆τb

2
gd,b and

∂gd,b

∂J
=

∆τb

2
gs,b , (6.57)

and, therefore, the derivatives of the powers of g can be written as

∂g
ns(b)
s,b

∂J
=

∆τb

2
ns(b)

gd,b

gsb

gns(b)
sb

∂g
nd(b)
d,b

∂J
=

∆τb

2
nd(b)

gs,b

gdb

g
nd(b)
db

. (6.58)

By application of the product rule of calculus, each term in the sum in the
numerator of (6.56) can be written as
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∂

∂J

∏

b

g
ns(b)
s,b g

nd(b)
d,b =

∂

∂J

[(∏

b

g
ns(b)
s,b

) (∏

b

g
nd(b)
d,b

)]
(6.59)

=

(
∂

∂J

∏

b

g
ns(b)
s,b

) (∏

b

g
nd(b)
d,b

)

+

(∏

b

g
ns(b)
s,b

) (
∂

∂J

∏

b

g
nd(b)
d,b

)
.

The differentiation of the products over b is achieved by using (6.58) and the
generalized product rule. This yields sums of the form

∂

∂J

∏

b

g
ns(b)
s,b =

1
2

∑

b

∆τb ns(b)
gd,b

gs,b

∏

b′
g

ns(b′)
s,b′ (6.60)

∂

∂J

∏

b

g
nd(b)
d,b =

1
2

∑

b

∆τb nd(b)
gs,b

gd,b

∏

b′
g

nd(b′)
d,b′ . (6.61)

Again, by inserting these identities into (6.59), we find that the weight of
the world line configuration reappears. The fractions of plaquette weights are
given by hyperbolic tangent and co–tangent functions:

∂

∂J

∏

b

g
ns(b)
s,b g

nd(b)
d,b =

1
2

∑

b

∆τb

(
ns(b)

gd,b

gs,b
+ nd(b)

gs,b

gd,b

) ∏

b

g
ns(b)
s,b g

nd(b)
d,b

(6.62)

=
1
2

∑

b

∆τb

(
ns(b) tanh

(
∆τbJ

2

)

︸ ︷︷ ︸
def
= th(b)

+nd(b) coth
(

∆τbJ

2

)

︸ ︷︷ ︸
def
= cth(b)

)
ρ(W ) .

When inserting this relation into (6.56), we find

∂ log Z

∂J
=

∑
W

1
2

∑
b ∆τb

(
ns(b) tanh

(
∆τbJ

2

)
+ nd(b) coth

(
∆τbJ

2

))
ρ(W )∑

W ρ(W )
(6.63)

By exchanging the order of summation and abbreviating the weighted sum
over all world line configurations W by the symbol <> we finally obtain

∂ log Z

∂J
=

1
2

∑

b

∆τb

(
<ns(b)> tanh

(
∆τbJ

2

)
+ <nd(b)> coth

(
∆τbJ

2

))

=
β

2m

∑

b

fb (< ns(b) > th(b) + < nd(b) > cth(b)) . (6.64)
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We now have the main ingredients to evaluate the spin–spin correlation func-
tions Czz and Cxy and the thermal energy E. The former are defined as

Czz def=

〈 ∑

<i,j>

Sz
i Sz

j

〉
=

1
β

∂

∂Jz
log Z (6.65)

Cxy def=

〈 ∑

<i,j>

1
2
(S+

i S−j + S−i S+
j )

〉
=

1
β

∂

∂J
log Z (6.66)

and follow immediately from the above calculations of the derivatives of the
partition function. In fact, by inserting (6.55) and (6.64) into these definitions
and cancelling the factor β/β we obtain

Czz =
1
4

Nd− 1
2m

∑

b

fb (< ns(b) > + < nd(b) >) , (6.67)

Cxy =
1

2m

∑

b

fb (< ns(b) > th(b) + < nd(b) > cth(b)) . (6.68)

In case of the Heisenberg model, the thermal energy E is a weighted sum of
the correlation functions.

E =< H > =
〈
− Jz

∑

<i,j>

Sz
i Sz

j −
J

2

∑

<i,j>

(
S+

i S−j + S−i S+
j

)〉

= −Jz Czz − J Cxy .

(6.69)

Inserting the explicit expressions for the correlations functions and collecting
terms with < ns(b) > and < nd(b) >, respectively, yields

E =− Jz

4
Nd +

∑

b

< ns(b) >
fb

2m
(Jz − J th(b))

+
∑

b

< nd(b) >
fb

2m
(Jz − J cth(b))

=− Jz

4
Nd +

∑

b

< ns(b) > fs(b) + < nd(b) > fd(b) . (6.70)

The vectors fs(b) and fd(b) are given by

fs(b) =
fb

2m
(Jz − J th(b)) (6.71)

fd(b) =
fb

2m
(Jz − J cth(b)) . (6.72)

6.2.4 Local moves, Metropolis

In this subsection we describe a concrete algorithm to simulate the canonical
averages of a Heisenberg Hamiltonian. We restrict ourselves to local changes
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on the checker board (local moves) to trace though the whole phase space. The
Metropolis algorithm shall be employed to create world–line configurations
according to the distribution ρ(W ) given by ρ(W ) = gnd

d gns
s .

To proceed from one configuration to the next, a world line number n and
a Trotter–Time τ have to be chosen at random. Figure 6.4 shows the local
moves that are possible if the white field happens to be at the right-hand
side of a locally straight (at time τ) world line n.
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Fig. 6.4. Possible moves consistent with the rules of the Checker board

Each possibility changes the weight of the world line configuration in a differ-
ent way. In case 1, for instance, two more diagonal lines appear increasing the
number nd by two: n′d = nd + 2. The two disappeared straight lines decrease
the number ns by two: n′s = ns − 2.
Does the move of the straight piece of a world line from the left-hand side of
a white field to the right-hand side of the same field affect the weight of the
configuration? Since only active plaquettes with one single line contribute to
ns, this depends on the state of the active plaquettes at either side of the
white field. If the active plaquettes at the left-hand side of the white field is
occupied by an additional straight piece of a world line and the other is not,
then the number ns increases by two: n′d = nd +2. Conversely, if the opposite
is true, it decreases by two: n′d = nd − 2. If both plaquettes have the same
state, nothing changes. The other three possibilities are treated in a similar
way, and one remarks that all changes of the weights are calculated locally.
Thus the efficiency of the local algorithm in evaluating the weight of the new
configuration.
According to Metropolis’ rule, however, the altered configuration is only ac-
cepted with the probability

q =
p(n′d, n

′
s)

p(nd, ns)
=

g
n′d
d g

n′s
s

gnd

d gns
s

= g
n′d−nd

d g
n′s−ns
s (6.73)

or 1, if q > 1. Generally speaking, it takes about 1.000 to 10.000 local moves
to change the configuration globally. Therefore, measurements can only be
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performed after a huge number of moves. This is an obvious drawback of
the adopted algorithm. Additionally, a low acceptance (< 5%) adds to the
inefficiency of this local approach.

6.2.5 Outlook

The above presented formalism of World Lines Quantum Monte Carlo can
also be applied to the Hubbard model with the kinetic term

Ĥ0 = −t
∑

ij,σ

a†i,σaj,σ . (6.74)

Only the meaning of the various terms in the formalism changes. For each spin
orientation σ =↑, ↓ a separate checker board has to be introduced. If only Ĥ0

is considered, the world lines of the two checker boards evolve independently.
The Hubbard model, however, also includes on-site interaction of the form

Ĥ1 = U
∑

i

n̂i↑ n̂i↓ .

This interaction term links the two checker boards: If a ↑ world line at time
τ goes through site i0, the presence of a ↓ world line at the same site and
time is suppressed by the interaction energy U .
The Hubbard model is considered to be a good candidate to describe High
Temperature Superconductors. However, for WLMC simulations the inverse
temperature β must be bigger than the parameter t of the Hamiltonian. This
yields to temperatures of about 10.000 K, that are much too high for real
superconductivity.
A drawback of the WLMC algorithm must also be mentioned: This algorithm
is always an approximation and has no exact limit. (??? Due to the Trotter
decomposition ????) Even in the particular Hubbard model with U = 0
WLMC doesn’t yield exact results.
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6.3 Projector–Quantum–Monte Carlo

As we explained in the last section, World Lines Monte Carlo fails for low
temperatures. The method presented next is designed to fill this gap.
The basic idea of the Projector method is to take a trial state |ψT 〉 and evalu-
ate expectation values of operators Ô in a state generated as low temperature
limit of the trial state |ψT 〉. By low temperature limit we mean the state

|ψ〉 = lim
β→∞

e−βĤ |ψT 〉 . (6.75)

The quantity β does not actually correspond to a real inverse thermodynamic
temperature. Nevertheless, it displays some analogies to it: If |ψT 〉 contains
a component in the direction of the non–degenerate ground state of the sys-
tem, the operator e−βH amplifies this component. This is seen by inserting a
complete set of eigenfunctions |ηn〉 of the Hamiltonian Ĥ with energies En.

|ψβ〉 =e−βĤ
∑

n≥0

|ηn〉〈ηn |ψT 〉 (6.76)

=
∑

n≥0

e−βEn |ηn〉〈ηn |ψT 〉

=e−βE0

(
〈η0 |ψT 〉|η0〉+ e−β(E1−E0)〈η1 |ψT 〉|η1〉+ . . .

)

We can choose the ground-state energy E0 = 0 and see that the for an increas-
ing β, the the contribution of excited states becomes exponentially smaller.
We can say that the artificial inverse temperature β controls a window in
the energy room. States within this window contribute to |ψβ〉, the others
don’t. This is illustrated in Fig. 6.5. We observe that the weight of an ex-
cited state |ηn〉 depends on the gap between E0 and En and on the inverse
temperature β.
Since we are interested in the physical properties of systems in the ground
state, we have the tendency to take β as large as possible. On the other hand,
due to non-commuting operators in the Hamiltonian, we will have to carry
out a Trotter decomposition. In this context a large β implies that we have to
take a big number m of Trotter times in order to keep the fraction β/m (and
thus the error) small. Therefore, it depends on our computational capacity
how large a β we can choose. Furthermore, the quality of the simulation
depends on our skill to choose the trial function |ψT 〉. If |ψT 〉 = |η0〉, we
see the exact correlations of the ground state for any β. It should be noted
that, in contrast to statistical mechanics, the state |ψT 〉 is a pure state, i.e. a
vector in the Hilbert space of the system. This implies that we can measure
correlations whose thermodynamical mixture cancels.
We will introduce the Projector Quantum Monte Carlo (PQMC) on the basis
of the Hubbard model

Ĥ = Ĥ0 + Ĥ1 , (6.77)
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where Ĥ0 is the hopping operatore and Ĥ1 the on-site interaction of the
particles. The band structure of the hopping operator can be exploited by
using the dispersion relation ε(k) of the lattice. This approach is possible,
because the band structure is modeled as an external potential with a one-
particle operator. Therefore, we write the contributions to the many-particle
Hamiltonian as

Ĥ0 =
∑

k,σ

ε(k)â†kσâkσ = −
∑

i,j,σ

tij â
†
iσâjσ , Ĥ1 = U

∑

i

n̂i↓n̂i↑ (6.78)

The expectation value of an observable Ô in the pure state |ψ〉 is given by
the fraction

< Ô >=
〈ψ|Ô|ψ〉
〈ψ |ψ 〉 =

〈ψT |e−βĤÔ e−βĤ |ψT 〉
〈ψT |e−2 βH |ψT 〉 (6.79)

In contrast to a grand canonical approach presented in Sec. 6.4, this expecta-
tion value contains no sum over a mixture of states. We expand the expression
e−βH |ψT 〉 in a product of m Trotter times and absorb the last factor in a
new trial state

∣∣ψ̃T

〉
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e−βĤ |ψT 〉 = e−
βĤ0
2m e−

βĤ1
m e−

βĤ0
m . . . e−

βĤ0
2m |ψT 〉︸ ︷︷ ︸∣∣ψ̃T

〉
=

m∏
τ=1

K̂(τ)V̂ (τ)
∣∣ψ̃T

〉
. (6.80)

The new symbols K̂(τ) and V̂ (τ) correspond to the operators of kinetic and
potential energy. They are defined as

K̂(τ) = exp
(
− βĤ0

(δ1τ + 1)m

)
, V̂ (τ) = exp

(
− β

m
Ĥ1

)
(6.81)

where, as usual, δij denotes the Kronecker delta. The kinetic part, K̂(τ), is a
one-particle operator whereas V̂ (τ) affects two particles if located at the same
lattice site. In order to continue the calculation, we want to map the entire
many particle problem on a one-particle problem with stochastic fields. This
mapping is achieved with the Discrete Hubbard Stratonovich transformation
presented next.

6.3.1 Discrete Hubbard Stratonovich Transformation

In this section we present a simplified version of the Siegert transformation
outlined in Sec. 6.3.6. The two-particle term n̂i↑n̂i↓ in the operator Ĥ1 is the
cause of our troubles. We tackle it with a trick. Consider the square of the
operator of the magnetization m̂i at site i

m̂2
i = (n̂i↑ − n̂i↓)2 =n̂2

i↑ + n̂2
i↓ − 2 n̂i↑ n̂i↓

= n̂i↑ + n̂i↓︸ ︷︷ ︸
n̂i

−2 n̂i↑ n̂i↓ (6.82)

In arriving at the last equation, we have exploited the fact that particle
number operators commute and are projectors for fermions, i.e. n̂2

iσ = n̂iσ.
The operator n̂i measures the number of electrons at site i independent of
their spin. Inserting the above information into the interaction part of the
Hamiltonian, i.e. Ĥ1, we obtain

Ĥ1 = U
∑

i

n̂i↑ n̂i↓ =
U

2

∑

i

(
n̂i − m̂2

i

)
. (6.83)

The sum over n̂i measures the total number of electrons and is henceforth
abbreviated by N̂e. In what follows, its contribution will be added to Ĥ0.
Thus we decompose the Hamiltonian as

Ĥ = Ĥ0 +
U

2
N̂e

︸ ︷︷ ︸
H̃0

−U

2
m̂2

i
︸ ︷︷ ︸

H̃1

. (6.84)
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Since all commutators between different m̂i vanish, the exponential function
of the new interaction Hamiltonian, H̃1, is given by the product

exp
(− β

m
H̃1

)
= exp

(βU

2m

∑

i

m̂2
i

)
=

∏

i

exp
(βU

2m
m̂2

i

)
. (6.85)

Now comes the crucial step. We apply the Hubbard Stratonovich transforma-
tion to every factor of the product by making the ansatz

exp
(βU

2m
m̂2

i

)
=

1
2

∑

S=±1

eλm̂iS . (6.86)

The new quantities S are called auxiliary fields since at each lattice site a
separate S = Si is needed. Since the Si’s can assume the values ±1, they
are Ising spins. The parameter λ can be inferred from the matrix elements
summarized in Table 6.2. For positive U the equation

ni↑ ni↓ mi exp
(

β
2m

Um2
i

)
1
2

∑
S=±1 eλmiS

0 0 0 1 1
1 1 0 1 1
1 0 1 exp

(
β

2m
U

)
cosh(λ)

0 1 −1 exp
(

β
2m

U
)

cosh(λ)

Table 6.2. Matrix elements for the evaluation of the parameter λ in the Hubbard
Stratonovich transformation

cosh(λ) = exp
(βU

2m

)
(6.87)

determines cosh(λ) uniquely. We insert the information of (6.2) into the ex-
pression of the exponential function of the interaction Hamiltonian. This
yields a sum over all Ising spin configurations forming the auxiliary fields:

exp
(
− β

m
H̃1

)
= 2−N

∑

S1...SN=±1

exp
(
λ

N∑

i=1

m̂iSi

)
(6.88)

Now the term stochastic field displays its justification: These fields S couple to
the magnetization similar to a magnetic field. Moreover, they are generated by
the random Ising Spin configurations {S1 . . . SN}. Equation (6.88) has an in-
tuitive interpretation: The field {S1 . . . SN} generates a static spin-dependent
potential for the particles. This can be seen by splitting the operator m̂i into
its components. Then (6.88) reads

exp
(
− β

m
H̃1

)
= 2−N

∑

S1...SN=±1

exp
(
λ

N∑

i=1

n̂i↑Si − λ

N∑

i=1

n̂i↓Si

)
(6.89)
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Suppose Si = +1 for a given i. Then the energy λ has to be paid if only one
electron of spin ↑ occupies the site i. Conversely, if only a spin ↓ electron sits
on site i the system gains the energy λ because of the minus sign in front of
the last sum. If site i is filled with two electrons, their energy contributions
cancel. For Si = −1 the same considerations apply, only the role of the ↑ and
↓ electrons are exchanged.

UA−e

lattice sites

Ising Spins

DA−e

p
o

te
n

ti
al

 e
n

er
g

y

0

+l

−l

PSfrag replacements

energy

lattice sites
Ising Spins
↑-electron
↓-electron

0
+λ
−λ

Fig. 6.6. Stochastic potential introduced by the Ising spins acting on ↑-electrons
(full lines) and ↓-electrons (dashed lines)

We observe a remarkable feature of (6.88). Within one Trotter slice the in-
teraction Hamiltonian H̃1 has been replaced by a sum of non-interacting
one-particle operators

H̃HS
1 =

∑

i

m̂i Si .

This, however, has to be paid with additional degrees of freedom which have
to be summed over, namely the stochastic field.
We separate the two different spin orientations σ =↑↓≡ ±1 and decompose
the one-particle Hamiltonians as

H̃0 =
∑

σ=↑↓

∑

i,j

(− tijσ +
U

2
δij

)
â†iσâjσ

def=
∑

σ=↑↓
H̃0σ (6.90)

H̃HS
1 =

∑

σ=↑↓
σ

∑

i

â†iσâiσ︸ ︷︷ ︸
n̂iσ

Si
def=

∑

σ=↑↓
H̃ ′

σ(S) . (6.91)

This has the consequence that the following commutators vanish

[H̃0σ, H̃0σ̄] = 0 , [H̃0σ, H̃ ′
σ̄] = 0 , [H̃ ′

σ, H̃ ′
σ̄] = 0 . (6.92)
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We decompose the operators K̂ and V̂ in a similar manner and define in
analogy to (6.81) the kinetic and potential part of each spin orientation

K̃(τ)
σ = exp

(
− β

m(1 + δτ,1)
H̃0σ

)
, Ṽσ(S(τ)) = exp

(
λσ

N∑

i=1

n̂iσS
(τ)
i

)
.

(6.93)

The operator e−βH can now be written as a sum over all possible Ising–Spin
configurations of the auxiliary field, S(τ) = {S(τ)

1 . . . S
(τ)
N } at every Trotter–

Time τ .

e−βĤ =
∑

{S(τ)
i }=±1

m∏
τ=1

K̃
(τ)
↑ Ṽ↑

(
S(τ)

) m∏
τ=1

K̃
(τ)
↓ Ṽ↓

(
S(τ)

)
. (6.94)

This is the desired result. We have expressed the exponential of the Hamilto-
nian of the Hubbard model as a sum over products of one-particle operators.

6.3.2 Choice of the Trial Function |ψT 〉 and Time–Evolution

Since we have separated the spin orientations in the operators Ṽ and K̃, it is
logical to do the same in the trial function. Thus we choose the trial function
as a Tensor–product of a pure spin ↑ state with a pure spin ↓ state writing

|ψT 〉 = |ψT↑〉 ⊗ |ψT↓〉 . (6.95)

The spin ↑ part of e−βĤ acts only on the spin ↑ factor of |ψT 〉 whereas its
spin ↓ part affects only on the spin ↓ factor. Therefore, the frozen state |ψβ〉
reads

|ψβ〉 = e−βĤ |ψT 〉 (6.96)

=
∑

{S(τ)
i }=±1

m∏
τ=1

K̃
(τ)
↑ Ṽ↑

(
S(τ)

)|ψT↑〉 ⊗
m∏

τ=1

K̃
(τ)
↓ Ṽ↓

(
S(τ)

)|ψT↓〉 .

The simplest choice for the trial functions |ψTσ〉 are Slater determinants rep-
resenting independent particles. Since only one-particle operators are involved
in (6.96), for each auxiliary-field configuration, independent particles stay in-
dependent particles by application of the product of K’s and V ’s. Correlations
come into play only through the sum over all auxiliary-field configurations.
We generate the trial state |ψTσ〉 by application of ladder operators b̂†α,σ on
the vacuum state |0〉 writing

|ψTσ〉 =
∣∣det

(
ϕα

σ

)〉
=

Nσ∏
α=1

b̂†α,σ|0〉 . (6.97)
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The symbol Nσ denotes the number of electrons of spin σ. The operator b̂†α,σ

generates an electron in the state |ϕα
σ〉. It is possible to express b̂†α,σ in terms

of the operators â†i,σ appearing in the Hamiltonian: The former is a linear
combination of the latter,

b̂†ασ =
N∑

i=1

ϕα
iσâ†iσ . (6.98)

The quantities ϕα
iσ have a direct physical interpretation: They denote the

amplitude of probability of finding the generated electron at lattice site i.
Having found an appropriate trial function, in the in the next step we concen-
trate on its evolution towards |ψβ〉. We confine the following considerations
to one spin orientation and thus drop the subscript σ. In a first step, accord-
ing to (6.94) we consider the application of the operators K̃(τ) and Ṽ

(
S(τ)

)
on the trial state. To this end, we notice that both operators are of the form

ŨK/V
τ

def= e−∆τH̃ with H̃ =
∑

ij

hij â
†
i âj , (6.99)

and ∆τ = β/m. The relevant matrix elements hij are inferred from (6.90)
and (6.91). They are given by

K̃(τ) : ŨK
τ hij → k

(τ)
ij =

1
1 + δτ,1

(− tijσ +
U

2
δij

)
(6.100a)

Ṽ
(
S(τ)

)
: ŨV

τ hij → v
(τ)
ij = λσ δij S

(τ)
i /∆τ (6.100b)

The operators Ũ
K/V
τ , albeit not unitary, display formal analogies to time evo-

lution operators. Therefore, τ is called an imaginary time and the composition

Ũτ
def= ŨK

τ ŨV
τ = K̃(τ)Ṽ

(
S(τ)

)
(6.101)

propagates b̂†i from time τ to τ −∆τ according to

b̂†i (∆τ) = Ũτ b̂†i Ũ−1
τ .

The last factor (τ = m) of the Hubbard Stratonovich decomposition, (6.96),
can thus be cast in the form

K̃(m)Ṽ
(
S(m)

)
b̂†1 b̂†2 . . . b̂†Nσ

|0〉
= Ũτ b̂†1Ũ

−1
τ Ũτ b̂†2Ũ

−1
τ . . . b̂†N Ũ−1

τ Ũτ |0〉
= b̂†1(∆τ) b̂†2(∆τ) . . . b̂†N (∆τ) |0〉 . (6.102)

To arrive at this expression, we have inserted unit operators of the form
I = Ũ−1

τ Ũτ . Moreover, we made use of the identity Ũτ |0〉 = |0〉. The opera-
tors b̂†α(∆τ) can be expressed in terms of the operators â†i constituting the
Hamiltonian,
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b̂†α(∆τ) =
∑

i

ϕ
(α)
i â†i (∆τ) . (6.103)

This is called the Wannier representation. We can infer an ODE for the time
evolution of the ladder operators â†l (∆τ) by differentiation with respect to
time

∂

∂∆τ
â†l (∆τ) =

∂

∂∆τ

(
e−∆τH̃ â†l e∆τH̃

)
= −e−∆τH̃ [H̃, â†l ]e

∆τH̃ . (6.104)

Since the exponential of the Hamiltonian commutes with the Hamiltonian,
this can be cast as

∂

∂∆τ
â†l (∆τ) = −[

H̃, â†l (∆τ)
]

. (6.105)

We are thus led to calculate the commutators [H̃, â†l ]. This can be done
remembering the representation of H̃ in terms of the operators â†i and âj .

[
H̃, â†l

]
=

[ ∑

ij

hij â
†
i âj , â

†
l

]

=
∑

ij

hij â
†
i âj â

†
l −

∑

ij

hij â
†
l â
†
i âj

=
∑

ij

hij â
†
i âj â

†
l −

∑

ij

hij

(− â†i â
†
l +

=0︷ ︸︸ ︷
{â†i , â†l }

)
âj

=
∑

ij

hij â
†
i âj â

†
l −

∑

ij

hij â
†
i

(
âj â

†
l − {âj , â

†
l }︸ ︷︷ ︸

=δj,l

)

=
∑

i

hilâ
†
i (6.106)

The fermionic anti-commutator relations were applied two times. The linear
ODE for the evolution of â†i (∆τ) is thus given by

∂

∂∆τ
â†l (∆τ) = −

∑

i

hilâ
†
i (∆τ) . (6.107)

In a quite analogous manner the evolution of the operator âi(∆τ) can be
derived. Carrying through the anti-commutator relations, it turns out that
the RHS of the evolution equation has opposite sign. Thus the ODE reads

∂

∂∆τ
âl(∆τ) = +

∑

i

hilâi(∆τ) . (6.108)

Summarizing â†l (∆τ) to the vector a†(∆τ) = {â†1(∆τ), . . . , â†N (∆τ)}, we ob-
tain the ODE (6.107) in vector form
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∂

∂∆τ
a†(∆τ) = −H a†(∆τ) , with the matrix H = {hij} . (6.109)

Its solution for the initial condition a†(∆τ = 0) = a† is given by

a†(∆τ) = e−∆τHa† . (6.110)

Inserting this information into (6.103), we obtain the time evolution of the
operators b̂†α as

b̂†α(∆τ) =
∑

i

ϕ
(α)
i â†i (∆τ) =

∑

ij

ϕ
(α)
i

(
e−∆τH(m)

)
ij

â†j

=
∑

j

( ∑

i

(
e−∆τH(m)

)
ji

ϕ
(α)
i

)
â†j

def=
∑

j

ϕ̃
(α)
j â†j

def= b̃†α . (6.111)

We observe the important feature of the algorithm: Due to the bilinear form
of the decoupled Hamiltonian, the one-particle operator b̂†α at a later time ∆τ
can be expressed in terms of the one-particle operator b̃†α. The decoupling of
the interaction term was achieved by application of the Hubbard Stratonovich
transformation.
The quantities ϕ̃

(α)
j are called modified one–particle orbitals. Using the defi-

nition (6.101), they can also be summarized in the vector

ϕ̃ (α) = Um ϕ(α) = K(m)V (m)ϕ(α) . (6.112)

Here, Um,K(m) and V (m) denote the matrices of the matrix elements of the
respective operators in the basis {â†i |0〉}. The term (6.102) finally reads

K̃(m)Ṽ
(
S(m)

)|ψT 〉 = b̃†1 b̃†2 . . . b̃†Nσ
|0〉 . (6.113)

Having treated the last factor of the Trotter decomposition, we now consider
the last two factors. They can be written as

K̃(m−1)Ṽ
(
S(m−1)

)
K̃(m)Ṽ

(
S(m)

)
b̂†1 b̂†2 . . . b̂†Nσ

|0〉
= K̃(m−1)Ṽ

(
S(m−1)

)
b̃†1 b̃†2 . . . b̃†Nσ

|0〉 (6.114)

= U(∆τ) b̃†1U
−1(∆τ)U(∆τ)b̃†2U

−1(∆τ) . . . b̃†NU−1(∆τ)U(∆τ)|0〉
= b̃†1(∆τ) b̃†2(∆τ) . . . b̃†N (∆τ) |0〉 .

Of course, the arguments developed for the evolution of b̂† apply also for the
evolution of b̃†. Thus we obtain

b̃†α(∆τ) =
∑

i

ϕ̃
(α)
i â†i (∆τ) def=

∑

j

˜̃ϕ(α)
j â†j

def= ˜̃
b†α , (6.115)

with the vector
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˜̃ϕ
(α)

= e−∆τH(m−1)
ϕ̃(α)

= e−∆τH(m−1)
e−∆τH(m)

ϕ(α)

= K(m−1)V (m−1)K(m)V (m)ϕ(α) .

(6.116)

Consequently, the last two factors can be written as

K̃(m−1)Ṽ
(
S(m−1)

)
K̃(m)Ṽ

(
S(m)

)|ψT 〉 = ˜̃
b†1

˜̃
b†2 . . .

˜̃
b†Nσ

|0〉 . (6.117)

6.3.3 General Formulae for Observables

By continuing the applied strategy through times τ , we are able to evaluate
all factors in the Trotter–decomposition of (6.96). For a given Ising-spin field
{S(τ)

i }, the result is

∣∣ψσ(S(τ)
i )

〉 def=
m∏

τ=1

K̃(τ)
σ Ṽ

(
S(τ)

σ

)|ψTσ〉 (6.118)

=
m∏

τ=1

K̃(τ)
σ Ṽ

(
S(τ)

σ

)(
b̂†1,σ b̂†2,σ . . . b̂†Nσ,σ

)|0〉 = b̄†1,σ . . . b̄†Nσ,σ|0〉

where we have re-introduced the spins σ of the fermions. For both spin ori-
entation the combined ket reads

∣∣ψ(S(τ)
i )

〉
=

∣∣ψ↑(S(τ)
i )

〉⊗
∣∣ψ↓(S(τ)

i )
〉

. (6.119)

The operators b̄ are the result of the evolution of the original b̂’s constituting
the trial function. Again, they can be written as a linear combination of the
â’s,

b̄†α,σ =
∑

i

ϕ̄
(α)
i,σ â†i,σ . (6.120)

The vectors ϕ̄(α) are generated by consecutive application of the evolution
operators

ϕ̄(α) = U1 · U2 · · · Umϕ(α) = K(1) · V (1) · · ·K(m) · V (m)︸ ︷︷ ︸
matrices

ϕ(α) . (6.121)

The N ×N matrices K and V are of the form of (6.99), where K is indepen-
dent of the spin–field S(τ). The matrix V is diagonal but depends on S(τ).
These matrices are inferred from (6.100a) and (6.100b) and read

Kij =
{

e
∆τ

1+δτ,1
(−thkσ+ U

2 δh,k)
}

ij
, Vij = eλσS

(τ)
i δi,j . (6.122)

They can be calculated before the actual run of the simulation. The dimension
of K and V equals the number of lattice sites of the problem.
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Thus, we have achieved a mapping of the Quantum–Mechanical problem on a
classical Ising Spin problem. The expectation value of the operator Ô, which
we started to calculate at the beginning of this section, has thus the form

< Ô >=
〈ψβ |Ô|ψβ〉
〈ψβ |ψβ 〉 =

∑
{Sτ

i },{S′τi }
〈
ψ(S′)

∣∣Ô|ψ(S)〉
∑
{Sτ

i },{S′τi }
〈
ψ(S′) |ψ(S)

〉 . (6.123)

By multiplying numerator and denominator with
〈
ψ(S′) |ψ(S)

〉
, we obtain

< Ô > =
∑

{Sτ
i }

∑

{S′τi }

〈
ψ(S′)

∣∣Ô|ψ(S)〉〈
ψ(S′) |ψ(S)

〉
〈
ψ(S′) |ψ(S)

〉
∑

{Sτ
i },{S′τi }

〈
ψ(S′) |ψ(S)

〉

=
∑

{Sτ
i }

∑

{S′τi }
O(S′, S) · ρ(S′, S) (6.124)

where we have introduced the abbreviations O(S′, S) for the first factor and
ρ(S′, S) for the last. Cast in this form, ρ can be interpreted as the statistical
weight of the spin fields S and S′. Notice, however, that ρ is a matrix element
and can thus be a complex number. This is called the sign–problem of the
QMC–simulation. It is the cause of severe troubles that are not yet overcome.
Usually, this sign is absorbed in the first factor O(S′, S) so that ρ becomes a
positive density.

O(S′, S) · ρ(S′, S) =⇒ O(S′, S) eiarg(ρ(S′,S)) · |ρ(S′, S)|

6.3.4 Explicit Expressions for Matrix Elements

In this subsection we provide explicit expressions needed to evaluate (6.124).

The matrix elements
〈
ψ(S′) |ψ(S)

〉
. Let us first consider the matrix

element needed for the weight ρ(S′, S). We will again suppress the spin index
and treat the expression

〈
ψ(S′) |ψ(S)

〉
=

〈
0
∣∣

1∏

ν=Ne

b̄′ν

Ne∏
ν=1

b̄†ν
∣∣0〉

, (6.125)

where b̄′ν and b̄†ν denotes the propagated b̂’s with the Ising fields S′ and S,
respectively.
Let’s, for simplicity, consider the case of only two particles (Ne = 2). Then
we find

〈
ψ(S′) |ψ(S)

〉
=

〈
0
∣∣b̄′2b̄′1b̄†1b̄†2

∣∣0〉
. (6.126)

In order to simplify this expression, we pull b̄′1 to the right-most position.
Then its application to |0〉 yields zero. We had to interchange b̄′1 twice with
creation operators. This can be done by using anti-commutators which yields
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〈
0
∣∣b̄′2b̄′1b̄†1b̄†2

∣∣0〉
=

〈
0
∣∣b̄′2{b̄′1, b̄†1}b̄†2

∣∣0〉− 〈
0
∣∣b̄′2b̄†1{b̄′1, b̄†2}

∣∣0〉
(6.127)

Now the anti-commutator relations for fermions imply that the apperaring
anti-commuators are proportional to the unit operator. This can be seen
by expanding b̄†α and b̄′β as a linear combination of the âh’s. Consequently,
the anti-commutators can be treated as numbers. These numbers can be
evaluated as expectation values of the anti-commutator in any normalized
state, thus also in the vacuum state:

〈
0
∣∣{b̄′α, b̄†β}

∣∣0〉
=

〈
0
∣∣b̄′αb̄†β

∣∣0〉
.

By substituting this into (6.126), we obtain a special form of Wick’s theorem
〈
ψ(S′) |ψ(S)

〉
=

〈
0
∣∣b̄′2b̄′1b̄†1b̄†2

∣∣0〉
(6.128)

=
〈
0
∣∣b̄′1b̄†1

∣∣0〉〈
0
∣∣b̄′2b̄†2

∣∣0〉− 〈
0
∣∣b̄′1b̄†2

∣∣0〉〈
0
∣∣b̄′2b̄†1

∣∣0〉
.

Upon introducing the overlap matrix Gαβ(S′, S) =
〈
0
∣∣b̄′αb̄†β

∣∣0〉
this can also

be cast in the form

〈
ψ(S′) |ψ(S)

〉
= G11 G22 −G12 G21 =

∣∣∣∣
G11 G12

G21 G22

∣∣∣∣ . (6.129)

In a straight forward way, the above procedure can be generalized for higher
particles numbers Ne. Wick’s theorem splits the product of Ne annihilition
operators and Ne creation operators in sums over Ne pairs of one annihilition
operator and one creation operator. We obtain

〈
ψ(S′) |ψ(S)

〉
= det(G(S′, S)) . (6.130)

The overlap matrix G can be obtained from the modified one-particle orbitals.
By using (6.120), we get

Gαβ =
〈
0
∣∣b̄′αb̄†β

∣∣0〉
=

∑

i,j

(
ϕ̄
′(α)
i

)?
ϕ̄

(β)
j

〈
0
∣∣âiâ

†
j

∣∣0〉
︸ ︷︷ ︸

=δij

=
∑

i

(
ϕ̄
′(α)
i

)?
ϕ̄

(β)
i .

(6.131)

Of course, ϕ̄′(α) means the orbital α propagated with the Ising spin field S′

and ϕ̄(β) is the result of the propagation of the orbital β determined by the
field S.

The matrix elements
〈
ψ(S′)

∣∣âν â†
µ

∣∣ψ(S)
〉
. In what follows we consider

the expectation values of one-particle operators of the form Ô = âν â†µ in the
propagated states, i.e.

O(S′, S) = gνµ(S′, S) =

〈
ψ(S′)

∣∣âν â†µ|ψ(S)〉〈
ψ(S′) |ψ(S)

〉 . (6.132)
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Combinations of these operators constitute e.g. the one-particle Greens func-
tion, thus the notation gνµ. The denominator of gνµ has already been evalu-
ated above. The numerator can be written in the form

〈
ψ(S′)

∣∣âν â†µ
∣∣ψ(S)

〉
=

〈
0
∣∣

1∏

α=Ne

b̄′αâν â†µ

Ne∏

β=1

b̄†β
∣∣0〉

=
〈
0
∣∣b̄′Ne

· · · b̄′2 b̄′1 b̄′0 b̄†0 b̄†1 b̄†2 · · · b̄†Ne

∣∣0〉
(6.133)

where we have substituted

b̄†0 =
Ne∑

i=1

ϕ̄
(0)
i â†i with ϕ̄

(0)
i = δi,µ

b̄′0 =
Ne∑

i=1

ϕ̄
′(0)?
i âi with ϕ̄

′(0)?
i = δi,ν

(6.134)

for the operators â. In doing so, we have formally arrived at the same expres-
sion as in (6.125). The only difference is that now the product runs from 0
to Ne. Therefore the same arguments apply and Wick’s theorem entails that
the numerator can be written as a determinant,

〈
0
∣∣

0∏

α=Ne

b̄′α

Ne∏

β=0

b̄†β
∣∣0〉

= det GO . (6.135)

The overlap matrix GO is evaluated by using (6.131) along with (6.134)
for the zero components. It depends on the auxiliary-field configuration, i.e.
GO = GO(S, S′), and is given by

GO
l,l′ =




δν,µ ϕ̄
(1)
µ · · · ϕ̄

(Ne)
µ

ϕ̄
′(1)?
ν... Gl,l′

ϕ̄
′(Ne)?
ν


 . (6.136)

Therefore, gνµ can be written as the ratio of the two determinants

gνµ(S′, S) =

〈
ψ(S′)

∣∣âν â†µ|ψ(S)〉〈
ψ(S′) |ψ(S)

〉 =
detGO(S′, S)
det G(S′, S)

. (6.137)

In order to evaluate this formula efficiently, it is expedient to perform linear
manipulations on the matrix GO that leave the determinant invariant and
reduce the zeroth column to zero except for the element (0, 0). After adding
a suitable linear combination of the last Ne columns to the zeroth column,
GO takes the form
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GO′
l,l′ =




gO ϕ̄
(1)
µ · · · ϕ̄

(Ne)
µ

0
... Gl,l′

0


 (6.138)

with gO given by

gO = δν,µ −
Ne∑

i,j=1

ϕ̄(i)
µ

(
G−1

)
ij

ϕ̄′(j)ν = δν,µ − ϕ̄T
µ ·G−1ϕ̄′

ν . (6.139)

The determinat can now be expanded along the first column and is given by
detGO′ = det GO = gO detG . Then gνµ simplifies to

gνµ(S′, S) =
gO detG

detG
= gO = δν,µ − ϕ̄T

µ ·G−1ϕ̄′
ν . (6.140)

Matrix elements of higher order operators. In order to calculate ma-
trix elements O(S, S′) of higher order operators, we follow the same lines
as for matrix elements of one-particle operators. Here, we will demonstrate
this procedure only for two-particle operators. A generalization is straight
forward.
A matrix element of a general two-particle operator can be cast in the form

O(S′, S) = gνµηξ(S′, S) =

〈
ψ(S′)

∣∣âν âµâ†ηâ†ξ
∣∣ψ(S)

〉
〈
ψ(S′) |ψ(S)

〉 . (6.141)

The numerator can be written as

gνµηξ =
〈
0
∣∣
−1∏

α=Ne

b̄′α

Ne∏

β=−1

b̄†β
∣∣0〉

(6.142)

with b̄0’s and b̄−1’s given by expressions analogous to (6.134). Now we ap-
ply Wick’s theorem reducing the last equation to the determinant gνµηξ =
detGO/ detG of a matrix

GO
l,l′ =




δη,µ δη,ν ϕ̄
(1)
η · · · ϕ̄

(Ne)
η

δξ,µ δξ,ν ϕ̄
(1)
ξ · · · ϕ̄

(Ne)
ξ

ϕ̄
′(1)?
µ ϕ̄

′(1)?
ν...
... Gl,l′

ϕ̄
′(Ne)?
µ ϕ̄

′(Ne)?
µ




. (6.143)

We can now eliminate the elements GO
0,−1 to GO

Ne,−1 and GO
1,0 to GO

Ne,0 by
adding linear combinations of the last Ne columns to the first two columns.
This leaves the determinant of the matrix invariant and yields
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GO
l,l′ =




gO
−1 rO ϕ̄

(1)
η · · · ϕ̄

(Ne)
η

0 gO
0 ϕ̄

(1)
ξ · · · ϕ̄

(Ne)
ξ

0 0
...

... Gl,l′

0 0




. (6.144)

The new symbols are given by

gO
0 = δξ,ν − ϕ̄T

ξ G−1ϕ̄′ν (6.145)

rO = δη,ν − ϕ̄T
η G−1ϕ̄′ν (6.146)

and

gO
−1 = δη,µ − rO

gO
0

(
δξ,µ − ϕ̄T

η G−1ϕ̄′µ
)− ϕ̄T

η G−1ϕ̄′µ (6.147)

Now the expectation value of the two-particle operator is easily calculated.
By expanding the determinant of GO along the first two columns we obtain

gνµηξ(S′, S) =
det GO

detG
=

gO
−1g

O
0 detG

detG
= gO

−1g
O
0 . (6.148)

6.3.5 Example: Simulation of the Hubbard Model

6.3.6 Siegert Transformation

As mentioned at the discussion of the Hubbard Stratonovich transformation,
there exists a general method of decomposing the exponential of the square
of an operator. This map is called the Siegert transformation and is outlined
in this subsection.
We consider a self–adjoint bounded operator Ô with discrete spectrum. The
eigenvectors {|n〉}n≥0 span a complete basis. Invoking the spectral theorem,
we can calculate the integral

∫ ∞

−∞
e−(Ô+xI)2 dx =

∫ ∞

−∞

∑

n≥0

|n〉 e−(On+x)2 〈n| dx

=
∑

n≥0

|n〉〈n|
∫ ∞

−∞
e−(On+x)2 dx .

(6.149)

We have inserted a complete set of eigenstates of the observable Ô and in
the second step exchanged integration with summation. In each integral we
substitute t = On + x. The bounds of integration remain the unchanged.
Thus we obtain the standard integral
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∫ ∞

−∞
e−(On+x)2 dx =

∫ ∞

−∞
e−t2 dt =

√
π (6.150)

and consequently
∫ ∞

−∞
e−(Ô+xI)2 dx =

√
π

∑

n≥0

|n〉〈n| = √
π I . (6.151)

On the other hand we can as well expand the exponent and write

∫ ∞

−∞
e−(Ô+xI)2 dx =

∫ ∞

−∞
e−(Ô2+2xÔ+x2) dx = e−Ô2

∫ ∞

−∞
e−2xÔe−x2

dx .

(6.152)

Substituting y = 2x and inserting the result of (6.151), we obtain the Siegert
transformation

eÔ2
=

1
2
√

π

∫ ∞

−∞
e−yÔe−

y2

4 dy . (6.153)

To illustrate this map, we reconsider the magnetization formerly treated with
the Hubbard Stratonovich transformation. In this case, the Siegert transfor-
mation yields

e
βU
2m m̂2

i = e(
√

βU
2m m̂i)

2
= eÔ2

=
1

2
√

π

∫ ∞

−∞
e−
√

βU
2m m̂i xe−

x2
4 dx . (6.154)

Instead of the sum over two discrete values we now have an integral over
infinitely many points. The quantity x corresponds to the auxiliary fields S
of the Hubbard Stratonovich transformation. This looks more complicated
but has, nevertheless, sometimes its advantages.
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Fig. 6.7. Comparison between the Siegert– and the Hubbard Stratonovich trans-
formation. Filled circles indicate the points at which the exponent is evaluated in
the case of the Hubbard Stratonovich transformation.

6.4 Grand Canonical QMC Method

Historical remarks . . . up to β = 1 which corresponds to a temperature of
10.000 Kelvin . . .
We want to calculate the expectation value of an observable Ô. In the grand
canonical ensemble it is given by the trace

< Ô >T =
1

tr(exp(−βĤ))
tr

(
Ôe−βĤ

)
. (6.155)

First we turn to investigate the grand canonical partition function Z appear-
ing in the denominator of (6.155).

Z = tr(exp(−βĤ)) =
∑

|ψ〉
〈ψ| exp(−βĤ)|ψ〉 . (6.156)

The sum has to be extended over a whole basis |ψ〉 of the Hilbert space (i.e.
Fock space) of the system. We will demonstrate the application of the Grand
Canonical QMC on the Hubbard model. The grand canonical Hamiltonian of
the Hubbard model is a sum of the kinetic (or hopping) part K̂, the on site
interaction part V̂ representing the short range part of the Coulomb repulsion
and a part proportional to the particle number N̂e. Thus, the Hamiltonian
reads

Ĥ = − t
∑

<i,j>,σ

ĉ†i,σ ĉj,σ

︸ ︷︷ ︸
K̂

+ U

N∑

i=1

n̂i↑n̂i↓

︸ ︷︷ ︸
V̂

−µ
∑

i,σ

n̂iσ

︸ ︷︷ ︸
N̂e

(6.157)
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where µ is the chemical potential of the system. Hopping is only possible
between nearest neighbours, as usually indicated by the symbol < i, j > in the
sum of the kinetic part. Since the components K̂ and V̂ of the Hamiltonian do
not commute, we perform a Suzuki Trotter decomposition of the exponential
function exp(−βĤ)) with m Trotter slices,

e−βĤ =
(
e−∆τĤ

)m

≈
m∏

τ=1

e−∆τK̂ e∆τµN̂e e∆τV̂ + O(∆τ2) (6.158)

with ∆τ = β/m. Inserting this approximation into the expression for the
partition function, (6.156) yields a trace of m products of Trotter slices,

Z = tr
m∏

τ=1

e−∆τK̂ e∆τµN̂e e∆τV̂ + O(∆τ2) . (6.159)

In what follows, we want to deal with one particle operators. Thus the next
step is to carry out a discrete Hubbard Stratonovich transformation in the
potential part of the Hamiltonian. To this end, we introduce the auxiliary
spins S and write

e∆τUn̂i↑n̂i↓ =
1
2

+1∑

S=−1

eλS(n̂i↑−n̂i↓) e
∆τU

2 (n̂i↑+n̂i↓) (6.160)

with the parameter λ given by

λ = 2 atanh

√
tanh

(
∆τU

2

)
. (6.161)

The many particle operator is transformed in a sum over one particle oper-
ators with an auxiliary field consisting of N Ising spins Si. This is possible,
because different n̂i operators commute.

e−∆τV̂ =
N∏

i=1

e−∆τU n̂i↑n̂i↓ =
N∏

i=1

(1
2

∑

Si=±1

eλSi(n̂i↑−n̂i↓)
)

e
∆τU

2

N∑
i=1

(n̂i↑+n̂i↓)

(6.162)

Exchanging sum and product and identifying the last sum as the operator of
the electron number, N̂e, yields

e−∆τV̂ = 2−N
∑

S1,...SN=±1

eλ
∑N

i=1 Si(n̂i↑−ni↓) e−
∆τU

2 N̂e . (6.163)

Since the operators of different spin orientation commute, we separate them
and split
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K̂ = K̂↑ + K̂↓ , V̂ = V̂↑ + V̂↓ , N̂e = N̂e↑ + N̂e↓ . (6.164)

Now we can write the exponential functions as products of exponentials
of each spin orientation. Furthermore, we insert the Hubbard Stratonovich
transformation in each Trotter slice X of (6.170),

X
def= e−∆τK̂ e∆τV̂ e∆τµN̂e (6.165)

= e−∆τK̂↑ e−∆τK̂↓2−N
∑

S

eλ
∑N

i=1 Sin̂i↑ e−λ
∑N

i=1 Sin̂i↓ e∆τ(µ−U
2 N̂e) .

We observe that the chemical potential µ is altered by the interaction. Sep-
arating the two spin orientations entirely, we obtain

X = 2−N
∑

S

e−∆τK̂↑ eλ
∑N

i=1 Sin̂i↑+∆τ(µ−U
2 N̂e↑)

e−∆τK̂↓ e−λ
∑N

i=1 Sin̂i↓+∆τ(µ−U
2 N̂e↓) . (6.166)

We introduce two matrices Kij and Vij for the kinetic and potential part,
respectively. They are of the form

Kij = −tδ<i,j> = −t

{
1 . . . xi, xj n. n.
0 . . . otherwise

V σ
ij (S) = δij

(
λσSi + ∆τ

(
µ− U

2

)) (6.167)

For each spin orientation σ = ±1 we define the operator

D̂σ(S) = e∆τ
∑

ij Kij ĉ†iσ ĉjσe
∑

ij Vij ĉ†iσ ĉjσ (6.168)

with the help of which we can express the Trotter slice X as

X = 2−N
∑

S

D̂↑(S) D̂↓(S) . (6.169)

Since the auxiliary fields S are different for each Trotter time τ , we have to
distinguish them. Thus we introduce the superscript (τ). Inserting (6.169)
into the partition function Z (6.156) we obtain

Z = 2−mN tr
m∏

τ=1

( ∑

S(τ)

D̂↑(S(τ)) D̂↓(S(τ))
)

. (6.170)

Exchanging the order of the sum and the product and exploiting the fact
that the operators D̂ commute for different spin orientations, we obtain

Z = 2−mN tr
∑

S(1)...S(m)

( m∏
τ=1

D̂↑(S(τ))
)

︸ ︷︷ ︸
(⇑)

( m∏
τ=1

D̂↓(S(τ))
)

︸ ︷︷ ︸
(⇓)

. (6.171)
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Upon introducing a basis of elementary tensors

|ψlk〉 = |ψl↑〉 ⊗ |ψk↓〉 (6.172)

the trace decomposes in the product of two sums, one for each spin orienta-
tion:

tr
(
(⇑)(⇓)

)
=

∑

lk

(
〈ψl↑| ⊗ 〈ψk↓|

)(
(⇑)⊗ (⇓)

)(
|ψl↑〉 ⊗ |ψk↓〉

)

=
∑

lk

〈ψl↑|(⇑)|ψl↑〉 〈ψk↓|(⇓)|ψk↓〉

=
( ∑

l

〈ψl↑|(⇑)|ψl↑〉
)( ∑

k

〈ψk↓|(⇓)|ψk↓〉
)

= tr(⇑) tr(⇓) (6.173)

Therefore, the whole partition function Z can be written as

Z = 2−mN
∑

S(1)...S(m)

[
tr

m∏
τ=1

D̂↑(S(τ))
][

tr
m∏

τ=1

D̂↓(S(τ))
]

(6.174)

Since the above expression is symmetric in the spin index, we will investigate
only one spin orientation and drop its index. Thus we have to deal with

tr
m∏

τ=1

D̂(S(τ)) , with D(S) = e∆τ
∑

ij Kij ĉ†i ĉj e
∑

ij Vij ĉ†i ĉj . (6.175)

This has the form of an exponential function of a combination of one particle
operators. We will look at the general structure of its application to wave
functions in n particle subspaces of the Fock space.
Only one electron:. If only one electron is present, its wave function can be
spanned up as a sum over one particle wave functions located at the lattice
sites i. Thus it is given by

|ψ〉 =
N∑

i=1

di c†i |0〉 , with the vector d = {d1, . . . dN} . (6.176)

An exponential function of creation and annihilation operators acts on such
a wave function |ψ〉 as

e
∑

ij Aij ĉ†i cj |ψ〉 =
N∑

k=1

dke
∑

ij Aij ĉ†i cj c†k|0〉

=
N∑

k=1

N∑

l=1

dk ĉ†l |0〉 〈0|ĉle
∑

ij Aij ĉ†i cj c†k|0〉︸ ︷︷ ︸
def
= {eA}lk

=
N∑

l=1

N∑

k=1

{eA}lk dk c†l |0〉 . (6.177)
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We have inserted a complete set of one particle states and defined the ma-
trix eA. Therefore we conclude that by application of eA, the vector d is
transformed in

d̃ = eA d (6.178)

and describes the new one particle state. The new state is subjected to a new
application of eA′ in the same way. Thus, in the one particle subspace we are
able to evaluate

m∏
τ=1

D̂(S(τ))|ψ〉 =
N∑

i=1

d̃iĉ
†
i |0〉 , with the vector d̃ =

( m∏
τ=1

e−∆τKeV
)

d .

(6.179)

Two electrons:. In the two electron subspace, a complete basis is given by
the elementary tensors

∣∣ψ(1)
〉 ⊗ ∣∣ψ(2)

〉
and each state can be spanned up as

a linear combination of these basis states.

|ψ〉 =
∣∣∣ψ(1)

〉
⊗

∣∣∣ψ(2)
〉

=
( N∑

i=1

d
(1)
i ĉ†i )

) ( N∑

i=1

d
(2)
i ĉ†i )

)
|0〉 (6.180)

Since the operator exp{∑ij Aij ĉ
†
i ĉj} contains no interaction, its application

to
∣∣ψ(1)

〉⊗
∣∣ψ(2)

〉
is given by the product

e
∑

ij Aij ĉ†i ĉj
∣∣ψ(1)

〉⊗ ∣∣ψ(2)
〉

=
(
e
∑

ij Aij ĉ†i ĉj
∣∣ψ(1)

〉)⊗
(
e
∑

ij Aij ĉ†i ĉj
∣∣ψ(2)

〉)

=
( N∑

i=1

d̃
(1)
i ĉ†i

)( N∑

i=1

d̃
(2)
i ĉ†i

)
|0〉 . (6.181)

Thus we can use the same formula as in the one particle case.

d̃
(α)

= eAd(α) =
m∏

τ=1

e∆τK eV (S(τ)
d(α) , α = 1, 2 . (6.182)

More particles:. The above considerations can easily be extended to any ar-
bitrary number of particle. Thus we obtain the operator identity in the whole
Fock space

tr
m∏

τ=1

D̂(S(τ)) = tr e
∑

ij Ãij ĉ†i ĉj = tr eĉ†Ãĉ , (6.183)

with the vectors of operators ĉ† = {ĉ†1 . . . ĉ†N} and ĉ = {ĉ1 . . . ĉN}. Since
the matrix Ã is a Hermitian matrix, we can decompose it into a product of
a diagonal matrix ∆ containing its eigenvalues εi and a unitary matrix U
containing the eigenvectors U j .
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Ã = U ∆ U† , ∆ij = δij εi , U = {U1, . . . , UN} . (6.184)

Upon defining the vector of annihilation operators f̂ = U†ĉ and its adjoint

f̂
†

= ĉ† U , the trace of the exponential function can be expressed as

tr eĉ†Ãĉ = tr eĉ†U ∆ U† ĉ (6.185)

= tr ef̂
†
∆f̂ = tr e

∑N
i=1 εi f̂†i f̂i = tr e

∑N
i=1 εi n̂f

i (6.186)

It is not difficult to show that the operators f̂ and f̂† fulfill the fermionic
anti–commutator relations and are thus annihilation and creation operators
of fermions:

{f̂i, f̂
†
j } =

∑

l,k

U†
li Ujk {ĉi, ĉ

†
j}︸ ︷︷ ︸

=δij

=
∑

l

U†
li Ujl = δij , (6.187)

{f̂i, f̂j} =
∑

l,k

U†
il U

†
jk {ĉi, ĉj}︸ ︷︷ ︸

=0

= 0 , (6.188)

{f̂†i , f̂†j } =
∑

l,k

Uli Ukj {ĉ†i , ĉ†j}︸ ︷︷ ︸
=0

= 0 . (6.189)

The operator n̂f
i measures the occupation number of the state f . It has thus

the eigenvalues 0 and 1. It is convenient to choose the basis of the occupation
numbers of states f for the evaluation of the trace

tr e
∑

i εi n̂f
i =

N∏

i=1

tr eεi n̂f
i =

N∏

i=1

∑

|n〉
〈n|eεi n̂f

i |n〉 (6.190)

=
N∏

i=1

(
1 + eεi

)
= det

(
1 + eÃ

)
. (6.191)

Therefore, the partition function Z reads

Z = e−mN
∑

S(1)...S(m)

∏
σ=±1

det
(
I+

m∏
τ=1

e−∆τK eV (S(τ))
)

. (6.192)

Thus we have to evaluate determinants of products of matrix exponential
functions. The occurring matrices are of the dimension N × N . The whole
product of determinants will be the weight in the Monte Carlo simulation.
In analogy to (6.170) we can formulate the expectation value of an operator
Ô with the Hubbard Stratonovich fields S and the decomposition of the
exponential functions in m Trotter slices. This yields

< Ô >T =
1
Z

∑

S(1)...S(m)

tr
{

Ô

m∏
τ=1

(
D̂↑(S(τ)) D̂↓(S(τ))

)}
(6.193)

=
∑

S(1)...S(m)

O(S(1) . . . S(m)) . (6.194)
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The quantities O(S(1) . . . S(m)) represent expectation values of Ô for a given
Hubbard Stratonovich field distribution. They are obviously defined as

O(S(1) . . . S(m)) =
1
Z

tr
{

Ô

m∏
τ=1

(
D̂↑(S(τ)) D̂↓(S(τ))

)}
. (6.195)

In order to apply a Monte Carlo algorithm, this expression has to be decom-
posed in a sum over a density function ρ(S(1) . . . S(m)) (to be sampled) times
a factor gO(S(1) . . . S(m)) involving the operator Ô. The major part of the
variation should be within the density ρ. The density ρ(S(1) . . . S(m)) can be
decomposed in a product of the contributions of either spin orientation ρ↑
and ρ↓. It is chosen to be equal to

ρ(S(1) . . . S(m)) = ρ↑(S(1) . . . S(m)) ρ↓(S(1) . . . S(m))

=
1

Z↑
tr

m∏
τ=1

D̂↑(S(τ))
1

Z↓
tr

m∏
τ=1

D̂↓(S(τ)) . (6.196)

Upon defining the function

gO(S(1) . . . S(m)) =
1

ρ(S(1) . . . S(m))
tr

{
Ô

m∏
τ=1

(
D̂↑(S(τ)) D̂↓(S(τ))

)}

=
1

ρ(S(1) . . . S(m))
tr

{
Ô e

∑
ij A↑ij ĉ†i↑ ĉj↑e

∑
ij A↓ij ĉ†i↓ ĉj↓︸ ︷︷ ︸

def= X̂

}
.

(6.197)

we can write the expectation value of Ô in the presence of the Hubbard
Stratonovich fields S(1) . . . S(m) as

O(S(1) . . . S(m)) = gO(S(1) . . . S(m)) ρ(S(1) . . . S(m)) . (6.198)

The exponential functions in X̂ contain only one particle operators and pre-
serve the particle number of each spin orientation N↑, N↓ separatly. Evaluat-
ing the trace of X̂ in the basis of the occupation number yields

tr {ÔX̂} =
N∑

n=0

∑

|ψ〉(n)

〈
ψ(n)

m

∣∣∣ÔX̂
∣∣∣ψ(n)

m

〉
(6.199)

where the kets
{∣∣∣ψ(n)

m

〉}
denote a complete basis in the subspace of n parti-

cles. If the operator Ô does not preserve the particle numbers N↑, N↓ individ-
ually, the above trace will be zero. This implies that Green’s functions such
as << c†i c

†
j >> vanish. Thus we only look at one and two particle Green’s

functions.
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6.4.1 Evaluation of One particle Green’s Functions

In real space the one particle Green’s functions have the general structure

gji =<< ĉjσ ĉ†iσ >>=
1
Z

tr
{
ĉiσ ĉ†jσ e−βĤ

}
. (6.200)

In our notation this corresponds to the expectation value of the operator

Ô = ĉjσ ĉ†iσ . (6.201)

With the auxiliary fields S(1) . . . S(m) this can be written as

gji =
∑

S(1)...S(m)

gji(S(1) . . . S(m))ρ↑(S(1) . . . S(m)) ρ↓(S(1) . . . S(m)) , (6.202)

with the symbols

gji(S(1) . . . S(m)) =
tr

{
ĉjσ ĉ†iσ

∏m
τ=1 D̂σ(S(τ))

∏m
τ=1 D̂σ(S(τ))

}

ρσ(S(1) . . . S(m))ρσ(S(1) . . . S(m))
. (6.203)

As usually, we separate the trace of the product in a product of traces and
observe that the trace over σ is just equal to ρσ(S(1) . . . S(m)). Thus it cancels
out with ρσ(S(1) . . . S(m)) in the denominator. This yields the expression

gji(S(1) . . . S(m)) =
tr

{
ĉjσ ĉ†iσ

∏m
τ=1 D̂σ(S(τ))

}

ρσ(S(1) . . . S(m))
(6.204)

From now on we drop the spin index σ. As in (6.184), we diagonalize the
matrix A and expand the operators ĉj and ĉ†i in a sum over f̂ν and f̂†µ,
respectively.

ĉj =
∑

ν

〈j |ν 〉︸ ︷︷ ︸
def= djν

f̂ν , and ĉ†i =
∑

µ

〈µ |j 〉︸ ︷︷ ︸
def= d∗µi

f̂†µ . (6.205)

This transformation simplifies the expression for the Green’s function to

gij =
1∑

ν(1 + eεi)

∑
µ,ν

d∗iµdiν tr
{

fµf†νe
∑

α εαn̂f
α

}
. (6.206)

The evaluation of the trace is easiest in the basis of the occupation num-
bers of the states |n1 . . . nN 〉 generated by f̂†. The exponential function can
be directly applied to such a state yielding the exponential function of the
weighted sum of eigenvalues nα.
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tr
{

f̂µf̂†νe
∑

α εαn̂f
α

}
=

1∑
n1,...nN=0

〈n1 . . . nN | f̂µf̂†ν e
∑

α εαn̂f
α |n1 . . . nN 〉

=
1∑

n1,...nN=0

〈n1 . . . nN | f̂µf̂†ν |n1 . . . nN 〉 e
∑

α εαnα .

(6.207)

The matrix element of the operator f̂µf̂†ν is only unequal to zero if there is no
electron in the state ν, nν = 0. Furthermore, the orthogonality of the basis
states |n1 . . . nN 〉 implies that the created electron must be annihilated to
yield a non vanishing matrix element. Thus we conclude that

〈n1 . . . nN | f̂µf̂†ν |n1 . . . nN 〉 = δµ,ν δnν ,0 (6.208)

must be fulfilled which implies for the trace

tr
{

f̂µf̂†νe
∑

α εαn̂f
α

}
=δµ,ν

N∏
µ=1
µ 6=ν

1∑
ν=0

eεµnµ

1∑
ν=0

δnν ,0 eενnν

=δµ,ν

N∏
µ=1
µ 6=ν

(1 + eεµ) .

(6.209)

Therefore, the whole Green’s function reads

gji =
∑
µ,ν

d∗jµdiν δν,µ
1

1 + eεν
=

∑
ν

d∗jµ

1
1 + eεν

diν . (6.210)

Inserting the expansion of f̂ , (6.205) and applying the spectral theorem, we
obtain

gji = 〈j|
(∑

ν

|ν〉 1
1 + eεν

〈ν|
)
|i〉 =

{(
I+ eA

)−1
}

ji

. (6.211)

This result shows us that the Green’s function gji is just the matrix element

of the operator
(
I+ eA

)−1

.

6.4.2 Evaluation of Two particle Green’s Functions

6.4.3 Numerics

In this subsection we will consider some numerical problems we are confronted
with in the grand canonical monte Carlo. We will treat only single spin flip
algorithms, where one Markov step consists in proposing (and accepting or
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rejecting) to alter one Hubbard Stratonovich Spin with index I at Trotter
time T . Applying the Metropolis Hastings method, we have to deal with the
ratio q given by

q =
ρ(S′)
ρ(S)

=
ρ↑(S′)ρ↓(S′)
ρ↑(S)ρ↓(S)

= q↑ q↓ . (6.212)

Since the densities ρ factorize in the components of either spin orientation, q
also has this property. Now the classical Metropolis algorithm accepts a trial
with the probability

α = min{1, q} (6.213)

whereas a heat bath approach accepts with

α =
q

1 + q
. (6.214)

If only one single spin flip is proposed, the new spin configuration S′ equals
the old one S with the exception of one mere spin S at time T and site I.
This means that we propose

S′I ′(T ) = −S
(T )
I . (6.215)

The impact of this small change on D̂σ(S(τ)) has to be evaluated. Since in
this quantity

D̂σ(S(τ)) = e−DeltaτKσ

eV (S(τ)) (6.216)

only the potential part V σ (which is diagonal in addition!!) actually depends
on the Hubbard Stratonovich field, the investigations simplify a lot. The
element ij of the matrix V σ is given by

V σ(S(τ))ij = σ λ S
(τ)
i δi,j . (6.217)

Thus the exponential function of V is also diagonal. Evaluated with the spin
field S′(T ) it reads
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eV (S′(T ))
ij =




eσλS
(T )
1 . .

. . . . . .
...

. eσλS
(T )
2 .

. . . . . .
...

. .
. . . .

. . .
...

. . . . . e−σλS
(T )
I

. . .
...

. . . . .
. . . . . .

...
. . . . . . . . . . . eσλS

(T )
N




(6.218)

= eV (S(T )) ·




1 . .
. . . . . .

...

. 1 .
. . . . . .

...

. .
. . . .

. . .
...

. . . . . e−2σλS
(T )
I

. . .
...

. . . . .
. . . . . .

...
. . . . . . . . . 1




The last diagonal matrix expressing effect of the difference of the spin fields
will be denoted by ∆. Therefore we can write

eV (S′(T )) = eV (S(T )) ∆ , with ∆ij = δij

{
1 . . . i 6= I

e−2σλS
(T )
I . . . i = I

(6.219)

Including the kinetic (hopping) term K for τ = T we can write

D(S′(T )) = D(S(T ))∆ . (6.220)

These terms appear in the expression of the determinant forming the density
ρ. Since the trace is invariant under cyclic permutations, we have the equality
for all L ∈ N

tr
m∏

τ=1

D(S(τ)) = tr
m∏

τ=1

D(S(τ+L)) . (6.221)

For this formula we have to introduce cyclic boundary conditions S(τ+m) =
S(τ) for the time dependence of the Hubbard Stratonovich field. With these
results, we can rotate the Ds within the product until obtain ∆ as the last
factor. This corresponds to exactly T rotations. Then the quantity q reads

q =
det

(
I+

∏m
τ=1 D(S′(τ+T ))

)

det
(
I+

∏m
τ=1 D(S(τ+T ))

) =
det

(
I+

∏m
τ=1 D(S(τ+T ))∆

)

det
(
I+

∏m
τ=1 D(S(τ+T ))

) (6.222)

Now we exploit the fact that the determinant of the product of two quadratic
matrices A and B−1 is given by the product of the individual determinants.
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Furthermore, the determinant of the inverse of a matrix is one over the de-
terminant of the matrix. This means

detAB−1 = detA detB−1 =
detA
detB

. (6.223)

With this information the quantity q becomes

q = det
((
I+

m∏
τ=1

D(S(τ+T )
)−1 (

I+
m∏

τ=1

D(S(τ+T )∆
)

. (6.224)

The first factor corresponds to the Green’s function for a given Hubbard
Stratonovich field configuration S at Trotter time T ,

g
S
ij(T ) =< ci(T ) c†j(T ) >S=

(
I+

m∏
τ=1

D(S(τ+T ))
)−1

. (6.225)

Furthermore, the second factor is identified with the inverse of a Green’s
function for the Hubbard Stratonovich field S′ at Trotter time T . Therefore
we obtain the equation

q = det
(
gS

(
gS′)−1

)
. (6.226)

Now we turn to investigating the effect of ∆. Physically speaking, ∆ cor-
responds to a defect in the lattice of the Hubbard Stratonovich fields. This
effect is described best with the Dyson equation which we derive next.

Dyson Equation:. We want to evaluate the effect of one differently oriented
spin on the Green’s function. To this end we start with the expression for the
inverse of the Green’s function introducing the abbreviations X,

(
gS′)−1 = I+

m∏
τ=1

D(S(τ+T ))

︸ ︷︷ ︸
def
= X

∆ = I+ X ∆ . (6.227)

The newly introduced quantity X is a part of the non–perturbed Green’s
function gS . Actually, its inverse is given by

(
gS

)−1 = I+ X =⇒ X =
(
gS

)−1 − I . (6.228)

Inserting the last identity in (6.227) yields
(
gS′)−1 = I +

((
gS

)−1 − I
)

∆

=
(
gS

)−1
gS +

(
gS

)−1 (
I− gS

)
∆

=
(
gS

)−1
(
gS +

(
I− gS

)
∆

)
. (6.229)
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In the first step we have expressed the identity operator as the product of
the Green’s function with its inverse. Adding and subtracting I in the second
factor yields after factorization

(
gS′)−1 =

(
gS

)−1
(
I+ (I− gS)(∆− I)

)
. (6.230)

This is the Dyson equation stated in the form we need it to calculate q.

Calculation of q:. Inserting this equation in the expression of q, (6.226), we
observe that the leading two factors gS and

(
gS

)−1 of the determinant cancel.
Therefore we obtain

q = det
(
I+ (I− gS) (∆− I)︸ ︷︷ ︸

def
= Y

)
. (6.231)

Now we turn to the evaluation of the above determinant. In the following we
will only be concerned with the Green’s function evaluated with the original
Hubbard Stratonovich fields S. Thus we will drop the index S of the Green’s
function and simply write

g
def= gS . (6.232)

In order to evaluate the determinant it is useful to exploit the identity

log
(
det(I+ Y )

)
= tr

(
log(I+ Y )

)

and consequently

det(I+ Y ) = exp
(

tr
(
log(I+ Y )

))
. (6.233)

The logarithm of the matrix I+Y can be evaluated with the Taylor expansion.
This involves the powers of the matrix Y multiplied by some real constants
cn. Exchanging trace and sum yields

det(I+ Y ) = exp
(

tr
( ∞∑

n=1

cn Y n
))

= exp
( ∞∑

n=1

cn tr (Y n)
)

. (6.234)

Now we derive an expression for tr(Y n). Naturally, we start with n = 1

trX =
∑

i

Xii =
∑

l,i

(I− gS)il (∆li − δli)︸ ︷︷ ︸
=α δliδiI

= α (I− gS)II . (6.235)

where α stands for the difference between ∆ and δ in the component I and
T , namely

α = e−2σλS
(T )
I − 1 . (6.236)
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Evaluating the indices II, the trace of Y turns out to be essentially given by
one diagonal element of the Green’s function g,

trY = α (1− g
S
II) . (6.237)

A diagonal element of the n–th power of Y has the structure

(Y n)ii = Yil1 Yl1l2 Yl2l3 . . . Yln−1i . (6.238)

Let’s examine the product of the first two matrices corresponding to the
element il2 of the square of Y . Inserting the explicit form of Y we obtain

(Y Y )il2 = Yil1 Yl1l2 = (I− gS)iIα δl1I Yl1l2 = (I− gS)iIα YIl2

= (I− gS)iIα
[
(I− g)IIα

]
δl2I (6.239)

Performing completely analog steps, we derive the third power of Y . It is
given by

(Y Y Y )il3 = (I− gS)iIα
[
(I− g)IIα

]2

δl2I . (6.240)

Now it is easy to guess what the n–th power of Y might be. Complete induc-
tion proves the identity

(Y n)ij = (I− gS)iIα
[
(I− g)IIα

]n−1

δjI =
[
(I− g)IIα

]n−1

Yij . (6.241)

The last identity stems from the definition of the matrix Y . A diagonal ele-
ment of Y n has an even simpler form because the Kronecker–delta then acts
on the index i in the first factor. Therefore the sum in the trace of Y n is
easily evaluated and the trace is given by

tr Y n =
∑

i

(Y n)ii =
∑

i

[
(I− g)IIα

]n

δiI =
[
(I− g)IIα

]n

(6.242)

for all n ∈ N. Inserting the above identity into (6.234) and observing that
the sum represents the Taylor expansion of the logarithm, the determinant
of I+ Y is given by

det(I+ Y ) = exp
( ∞∑

n=1

cn

[
(I− g)IIα

]n
)

= exp
(

log
(
1 +

[
(I− g)IIα

]))

= 1− (1− gII)α , (6.243)

where the exponential function cancelled the logarithm. Inserting the defini-
tion of α, qσ eventually turns out to be equal to

qσ = 2 +
(
1− g

S
IIσ(T )

) (
e−2σλS

(T )
II − 1

)
. (6.244)

These considerations reduce the computational cost of the algorithm from
originally o(mN3) to merely o(1)!!
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Updating of the Green’s functions:. If the new configuration of the Hubbard
Stratonovich spins S′ is accepted in the Markov chain, the Green’s functions
gS(T ) has to be updated. To this end we can also use the Dyson Equation
(6.230), although now not for the inverse but for the actual Green’s function.

gS′(T ) =
(
(I+ (I− gS(T )) (∆− I))−1

gS(T )

=
(
I+ Y

)−1
gS(T ) (6.245)

We expand the inverse of I+ Y in a geometric series. This yields

(
I+ Y

)−1 =
∞∑

ν=0

(−1)ν Y ν = I−
∞∑

ν=1

(−1)ν−1 Y ν . (6.246)

Inserting the derived formula for the ν–th power of Y , (6.241), we find

((
I+ Y

)−1
)

ij
= I−

∞∑
ν=1

(−1)ν−1
[
α (1− gII)

]ν−1

Yij (6.247)

Substituting the index ν by µ = ν−1, we remark that the complete geometric
series is reproduced, now for the numbers −α (1− gII). Inserting its sum we
find

((
I+ Y

)−1
)

ij
= I− [

1 + α (1− gII)
]−1

Yij . (6.248)

Finally we obtain the the correct expression for the altered Green’s function.
Inserting the last equation in (6.245) we find

gS′(T ) = I− [
1 + α (1− gII)

]−1

Y gS(T ) . (6.249)

This formula involves only one matrix multiplication, namely Y gS(T ). The
original computational cost of O(mN3) is thus reduced to O(N2).
But not only the Green’s function at time τ = T has to be updated. All
the Green’s function have to be calculated. This is most efficiently done by
a procedure called wrapping. This is presented next.
Remember that the one particle Green’s function at time τL′ = L′∆τ for
spin–orientation σ is given by (6.225). We abbreviate the product over m
Trotter slices by X writing

g
S
ij(L

′∆τ) =
[
I+

m∏
τ=1

D(S(τ+L′))

︸ ︷︷ ︸
XL′

]−1

=
[
I+ XL′

]−1

. (6.250)

Again, this expression can be viewed as the sum of the geometric series. We
obtain
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g
S
ij(L

′∆τ) = I+
∞∑

ν=1

(−1)νXν
L′ (6.251)

In order to simplify the above equation, we have to examine the powers of
XL′ . Writing these powers as products and inserting the definition of XL′ we
find the relation

Xν
L′ = DL′+1 DL′+2 · · · Xν−1

0 D1 · · · DL′ . (6.252)

Inserting (6.252) into the product of (6.251) we obtain for the Green’s func-
tion at time L′∆τ

g
S
ij(L

′∆τ) = I+ DL′+1 · · · Dm

( ∞∑
ν=1

(−1)νXν−1
0

)
D1 · · · DL′ . (6.253)

Applying the same strategy for g
S
ij((L

′ + 1) ∆τ), we derive

Xν
L′ = DL′+2 DL′+3 · · · Xν−1

0 D1 · · · DL′+1 . (6.254)

Therefore, the Green’s function at time (L′ + 1) ∆τ is given by

g
S
ij((L

′+1) ∆τ) = I+ DL′+2 · · · Dm

( ∞∑
ν=1

(−1)νXν−1
0

)
D1 · · · DL′+1 .

=I+ D−1
L′+1

(
DL′+1 · · ·Dm

( ∞∑
ν=1

(−1)νXν−1
0

)
D1 · · ·DL′

)
DL′+1

=I+ D−1
L′+1

(
g

S
ij(L

′∆τ)− I
)

DL′+1 (6.255)

Simplifying the content of the above parenthesis, we finally obtain a recursion
expression for the updating. It reads

gS′(τ + 1) = D−1(S(τ+1)) gS(τ)D(S(τ+1)) . (6.256)

Thus, beginning with τ = T , all Green’s functions can be updated with the
above simple formula. From time to time the Green’s function has to be
evaluated ab initio due to accumulation of numerical round off errors.

Time dependent Green’s functions:. Now we consider an operator Ô depend-
ing on the Trotter time τ . This is for instance the case of the time dependent
one particle Green’s function

Ô(τ) = ĉi(τ) ĉ†j (6.257)

The formalism generalizes best for Trotter times τ that are a multiple of ∆τ .
Therefore we tackle the trace

< ĉi(τ) ĉ†j >= tr
(
ĉi(τ) ĉ†j

m∏
τ=1

D(S(τ))
)

, for τ = n∆τ , (6.258)
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where is a natural number n ∈ N much smaller than m Using the Heisenberg
time evolution for the operators ĉi(τ), we obtain the equation

ĉi(τ) = eτ Ĥ ĉi e−τ Ĥ . (6.259)

For the expectation value in the canonical ensembles this yields

< ĉi(τ) ĉ†j >=
1
Z

tr
(
eτĤe−βĤ ĉie−τĤ ĉ†j

)
=

1
Z

tr
(
e−(β−τ)Ĥ ĉie−τĤ ĉ†j

)
.

(6.260)

Introducing the discretization of the Trotter time ∆τ , we can write the
Green’s function as a product

< ĉi(τ) ĉ†j >=
1
Z

tr
( (m−n)∏

l=1

e−∆τĤ ĉi e−∆τĤ
)

. (6.261)

We introduce a sequence of propagators Û(∆τ) = e∆τĤ to obtain

ĉi(τ) = U(∆τ)n ĉi U(∆τ)−n (6.262)

and

< ĉi(τ) ĉ†j >
∣∣∣
τ=n ∆τ

= <
(
Û(∆τ)

)n
ĉi ĉ†j >

=
∑

S

ρ(S)
( m∏

l=m−n+1

D(S(l)) g
)

ij
(6.263)

Numerical Stability of Matrix Products:. In early years the Grand Canonical
Quantum Monte Carlo was only of academic usefulness because numerical
instability spoilt its application at lower (below 10.000 K) temperatures. The
crucial point in the algorithm is the evaluation of the matrix product

m∏

l=1

D(S(l)) (6.264)

because this has to be done for an as big number of Trotter slices as m ≈ 1000.
In real applications the eigenvalue of the matrices D(S(l)) range within the
interval (10−100, 10100). This means that the condition number of D(S(l))
(given by the ratio of the largest and the smallest eigenvalue) is up to 10200.
Therefore, successive matrix multiplication as in (6.264) is an extremely ill
posed process. This is the case, because a matrix multiplication mixes all
magnitudes of the entries of the involved matrices.
There is a way of stabilizing matrix multiplications by separating different
magnitudes of eigenvalues. This approach lifts many of the restrictions of the
Grand Canonical QMC. It consists of successive application of the singular
value decomposition (SVD) outlined in the following.
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In a first step we directly carry out as many matrix multiplications (say n)
of (6.264) as reasonably possible. The products are referred to as matrices
A(k) , k = 1 . . . m/n. In the worst case no multiplication is possible and A(k)

corresponds to D(S(l)).

D(S(1)) · · ·D(S(n))︸ ︷︷ ︸
A(m/n)

·D(S(n+1)) · · ·D(S(2n))︸ ︷︷ ︸
A(m/n−1)

· · ·D(S(m−n)) · · ·D(S(m))︸ ︷︷ ︸
A(1)

.

(6.265)

Thus the product of (6.264) is partially carried out. It simplifies to a product
of m/n factors counted from k = m/n down to k = 1,

m∏

l=1

D(S(l)) =
1∏

k=m/n

A(k) = A(m/n) · · · A(2) ·A(1) . (6.266)

The product of the matrices A(k) is now stabilized by the following scheme:
Matrix A(1) is subjected to a SVD. This yields a decomposition of A(1) in a
product of three matrices U (1), ∆(1) and V (1),

A(1) = U (1) ∆(1) V (1)† (6.267)

with the unitary matrices U (1) and V (1) and the diagonal matrix ∆(1). Now
all eigenvalues of a unitary matrix are situated on the unit circle. Thus its
condition number is 1 and a product of any matrix A with a unitary matrix
doesn’t worsen the condition number of A. Therefore, we can safely multiply
A(2) with U (1). Furthermore, ∆(1) is a diagonal matrix and its multiplication
to A(2) U (1) is trivial. The product of these three matrices is subjected to a
SVD decomposition. This yields

A(2) ·A(1) = A(2) U (1) ∆(1)︸ ︷︷ ︸
U(2) ∆(2) V (2)†

V (1)† = U (2) ∆(2) V (2)† V (1)† (6.268)

The same procedure is applies for the product of the matrix A(3) with (6.268).
A SVD of the matrix A(3) U (2) ∆(2) yields

A(3) ·A(2) ·A(1) = U (3) ∆(3) V (3)† V (2)† V (1)† . (6.269)

Successive application of this strategy finally yields the stable formula for the
product

m∏

l=1

D(S(l)) = U (m/n) ∆(m/n)
1∏

l=m/n

V (l)† . (6.270)

This evaluation involves m/n singular value decompositions. The computa-
tional cost of one such operation is ???



7. Maximum Entropy

7.1 Ill–Posed Inversion Problems

In this section we will show a way to the famous maximum entropy principle.
To motivate this principle, we consider a set of linear equations with the
vector of unknowns x, matrix M and the vector of known data d:

M · x = d . (7.1)

It often occurs that the data d derived from an experiment or a computer
simulation suffer from noise which will be denoted by η. Furthermore, the
condition of the matrix M given by the ratio of biggest to smallest eigenvalue
can be rather high. That means that the problem

M · x = d + η (7.2)

is ill posed and cannot be solved by direct inversion of M . Small eigenvalues
of M amplify the noise significantly. This is best seen when considering a
quadratic matrix M that can be cast in the form

M =
∑

i

aiui u
†
i (7.3)

with eigenvalues ai and eigenvectors ui. Application of the inverse of M to
d + η yields

M−1(d + η) =
∑

i

1
ai

ui u
†
i (d + η) = x +

∑

i

ui
u†iη
ai

, (7.4)

with x being the underlying exact solution. In case of a large overlap u†iη,
between the eigenvectors u†i and the noise vector η the error is drastically
amplified. If M originates from an experimental apparatus–function of a gen-
eral point spread function, small eigenvalues correspond to rapidly oscillating
eigenfunctions which couple stronger to noise contributions η than to the ex-
act data d.
To illustrate this point consider some measurements of the Greens function
along the imaginary axes of which we want to infer the spectral function
A(ω). The relation between the two functions is given by
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g(τi) =
∫ ∞

0

A(ω) e−ωτi dω . (7.5)

The exponential part of the integrand decreases rapidly as ω becomes large.
This means that the shape of A(ω) for ω > 1 influences only very weakly
the integral g(τi). Reversely, since we are given the data g(τi), we can say
little about this part of A(ω). Worse, direct inversion of Eq. (7.5) amplifies
the noise of g(τi) giving rise to huge oscillations of the spectral function (cf.
Figure 7.1). In the example illustrated in Fig. 7.1, the largest eigenvalue is
approximately 74 and the smallest 3× 10−19.
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Fig. 7.1. The smooth line in the left–hand plot corresponds to the image of the
smooth peak in the right–hand plot. After adding a small noise to g(τ), the inversion
A(ω) has lost all resemblence to the actual peak.

Since this direct approach is not feasible, we will raise a different question:
Given the data g(τi) and some prior knowledge I what is the most likely
spectral function A(ω) ?? The Bayes’ Theorem yields

p(A(ω) | g(τi) I) =
1
Z

p(g(τi) |A(ω) I) p(A(ω) | I)

with the normalization Z. In order to apply this formula, we have to deter-
mine the prior probability p(A(ω) | I). In this case it will be an entropic prior.
The general problem of the correct assignment of priors is the contents of the
subsequent section.

7.2 Quantified Maximum Entropy

We next assign the probabilities in the case of noisy testable infromation.
Either data are obtained from a computer experiment or from a real physical
experiment. In both cases the data suffer from random noise. In what follows
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we want to derive a formfree reconstruction of the distribution function ρ(x).
This procedure is called quantified maximum entropy.
We will derive the probability p(ρ(x) |d, I) that a distribution ρ(x) is the real
one in the light of noisy data d. A number of Nd data points dν will be taken
into account. The result is derived in four steps.

7.2.1 Step One

We discretize the possible values of x leading to

ρ(x) → ρi = ρ(xi)∆Vi . (7.6)

This discrete set is called the set of pixels.

7.2.2 Step Two

We introduce a small unit of ρi denoted by ∆ρ. This quantization maps the
probability density onto integers ni

ρi → ni with ρi ≈ ni ∆ρ . (7.7)

I.e., instead of p(ρ| . . .) we are dealing with p({ni}| . . .), which simplifies the
argumentation considerably.

7.2.3 Step Three

We derive the prior probability P (n | I). To this end we introduce the default
model by assuming that that the mean number of points in every pixel i
is given by µi. More precisely, we assume that every ∆ρ we add has the
probability µi/

∑
µi to fall into pixel i. This gives rise to a Poisson process

whose distribution reads

P (ni |µi I) =
µni

i

ni!
e−µi , ni = 0, 1, 2, . . . . (7.8)

The combined probability P (n |µ, I) for all N pixels is given by the product

P (n |µ, I) =
N∏

i=1

P (ni |µi, I) = e−
∑

i µi

N∏

i=1

µni
i

ni!
. (7.9)

Assuming large numbers ni À 1 we employ Stirling’s formula and obtain

P (n | I) =
1
Z

1∏
i

√
ni

eS , (7.10)

where Z is the normalization factor and S stands for the entropy.

S =
N∑

i=1

Si =
N∑

i=1

ni − µi − ni log(ni/µi) (7.11)
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7.2.4 Step Four

We undo the quantization

ni =
ρi

∆ρ
⇒ µi =

mi

∆ρ
(7.12)

The prior probability for ni, i.e. Eq. (7.10), and thus the prior for ρi can be
expressed in terms of ρi and mi. In fact, by inserting Eq. (7.12) into Eq. (7.10)
we obtain

p(ρ |α, I) =
1

Z(α)
1∏

i

√
ρi

eαS . (7.13)

We have introduced the regularization parameter α = 1
∆ρ that is also called

nuisance parameter or hyper-parameter. It has to be fixed later on, and mean-
while we add it to the set of conditions.

7.2.5 The Steepest Descent Approximation

The normalization of p(ρ |α, I) can actually be computed numerically. For
the posterior means we encounter, however, more complex integrals which
can no longer be evaluate analytically and one either resorts to the MCMC
approach or to the steepest descent approximation, which we will discuss
now. The general idea behind this method is to approximate integrals whose
integrand is a product of a weakly varying function f(ρ) and a sharply peaked
factor exp(Φ(ρ)) (as illustrated in Fig. 7.2) by making a Taylor expansion of
the exponent Φ(ρ) around its global maximum ρ∗

m

e

rrx

Fig. 7.2. Illustration of the steepest descent method: The flat measure µ(ρ) com-
pared with the strongly peaked exponential function
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∫

RN
+

eΦ(ρ) f(ρ) dρ ≈ f(ρ∗)
∫

RN

e
Φ(ρ∗)+ 1

2

∑
i,j ∆ρi

∂2
∂ρi∂ρj

Φ

∣∣∣
ρ∗

∆ρj

dρ . (7.14)

This approximation is possible whenever the maximum is sharply peaked
and far enough away from the origin to allow the extension of the volume of
integration to the entire RN . All the eigenvalues of the Hessian Hij

Hij = − ∂2

∂ρi∂ρj
Φ

∣∣∣
ρ∗

(7.15)

have to be positive. Otherwise the integral does not converge. Due to the
convexity of the function Φ(ρ), this condition is fulfilled in the present case.
The steepest descent approximation yields a gaussian integral which is readily
evaluated

∫ ∞

0

eΦ(ρ) f(ρ) dρ ≈ f(ρ∗) eΦ(ρ∗) (2π)N/2 |H|−1/2 . (7.16)

7.2.6 Normalization of p(ρ | α I)

The application of the steepest descent approximation to the normalization
of the entropic prior yields

Z(α) =
N∏

i=1

1√
mi

√
2π mi/α = (2π)N/2 α−N/2 , (7.17)

and the normalized entropic prior reads

p(ρ |α I) =
(

α

2π

)N/2

(
∏

i

ρ
− 1

2
i ) eαS . (7.18)

If we increase the regularization parameter α, the entropic prior becomes an
increasingly narrow peak at ρ = µ. Since the norm is fixed to 1, we eventually
have

lim
α→∞

p(ρ |α I) = δ(ρ− µ) (7.19)

7.2.7 Posterior probability density

Next we discuss the posterior pdf p(ρ |d I) for ρ in the light of the data d
and prior information I. The marginalization rule yields

p(ρ |d I) =
∫

p(ρ |αd I) p(α |d I) dα . (7.20)
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As a function of α, the first factor p(ρ |αd I) is rather flat whereas p(α |d I) is
strongly peaked even for a fairly small number of five data points. Therefore,
we approximate the integral as

p(ρ |d I) ≈ p(ρ |α∗d I)
∫

p(α |d I) dα

︸ ︷︷ ︸
=1

= p(ρ |α∗ d I) . (7.21)

As usual, the symbol α∗ denotes the peak of p(α |d I). The approximation
used in Eq. (7.21) is called the evidence approximation. In order to find the
maximum α∗, we have to know the distribution p(α |d I), that we get as
follows

p(α |d I) =
∫

p(α ρ |d I) dρ =
1

p(d | I)

∫
p(α ρd | I) dρ

=
1

p(d | I)

∫
p(d |ρα I) p(ρ |α I) p(α | I) dρ

∝ p(α | I)
∫

p(ρ|dα I) dρ

(7.22)

We have used that the probability density p(d |ρ α I) (likelihood) does not
depend on α. Since α is scale-parameter p(α | I) is given by Jeffreys’ prior
p(α | I) ∝ 1/α. The density p(ρ |α I) is given by the entropic prior, as derived
above.

p
entropy

Jeffreys

aax
0 2 4 6 8

Fig. 7.3. Qualitative behaviour of the function p(α |d I)

In QMC simulations, the model is linear. Then the vector of theoretical data
dth is obtained by application of a matrix M to the densities ρ. Thus, the
general form of a QMC model reads

dth(ρ) = M · ρ . (7.23)
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A typical example is the above quoted relation between the Greens function
and the spectral function, Eq. (7.5).
The deviation of the QMC data from the theoretical prediction is denoted
by ∆d

∆d = d− dth(ρ) = d−M · ρ . (7.24)

For the QMC data, the likelihood function is the Nd–dimensional multi-
variate normal distribution

p(d |ρ I) = (2π)−Nd/2 |C|1/2 e−
1
2 ∆d†C−1∆d . (7.25)

The covariance matrix C originates from the errors of the experiment. By
substituting this ansatz into Eq. (7.22), we obtain in steepest descent ap-
proximation

p(α |d I) = (2π)−(Nd+N)/2 |C|1/2 αN/2−1

∫ ∞

0

e

=:Φ︷ ︸︸ ︷
−1

2
∆d†C−1∆d + α S ∏

i

dρi√
ρi

= (2π)−Nd/2 |C|1/2 αN/2−1 |H|−1/2 e−Φ∗

∏
i

√
ρ∗i

. (7.26)

In order to carry out this approximation we have to find the maximum ρ∗i of
the exponent

Φ = −1
2

∆d†C−1∆d︸ ︷︷ ︸
χ2

+ α S (7.27)

under the positivity constraint. There are a couple of tricks to find the max-
imum efficiently, but basically it is a modified version of Newton-Raphson.
The quantity χ2 is called the misfit of the data because it is a measure for
the deviation of the experimental data from the theoretically predicted data.
At the maximum ρ∗i the Hessian

Hij = − ∂2Φ

∂ρi∂ρj
= (M†C−1M)ij +

α

ρ∗i
δij (7.28)

has to be evaluated. The posterior pdf in the evidence approximation is even-
tually

p(ρ |d I) = p(ρ |d I α∗) =
1
Z

e−
1
2 χ2 + α∗S , (7.29)

7.3 Examples

In this Section we will illustrate the Maximum Entropy based reconstruction
for two different examples. The first example is the inversion of the integral
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Fig. 7.4. Dependence of the quality of the reconstruction on the noise. The plots at
the left–hand side show the data g whose Maximum–Entropy (ME) reconstruction
is depicted at the right–hand side. The dashed line at the left–hand side represents
g calculated with ρ from the ME reconstruction.

transformation with an exponential kernel. This is a typical problem arising
in Quantum Monte Carlo methods. As a second example we will consider an
optical application, namely the Abel inversion.

7.3.1 Laplace Transformation
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Fig. 7.5. Reconstruction of noisy data. The quality of the reconstruction depen-
dends on the the width of the peak.
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Fig. 7.6. Resolution of two neighbouring peaks. The farther the peaks are sepa-
rated, the better they are resolved in the reconstruction process.

We assume that the experimental data g are related to the desired physical
quantity ρ(x) via the integral

g(ξ) =
∫ ∞

0

e−ξx ρ(x) dx . (7.30)

The data g are given for a set ξ1, . . . , ξNd
. The problem is to reconstruct the

function ρ(x).
First of all we have to discretize the relation (7.30). The simplest way of doing
that is to truncate the integral at x = xf and then replace it by a finite sum.
By introducing a number N of x-knots according to xi = (i− 1/2) xf/N , we
obtain

gν ≡ g(ξν) ≈
N∑

i=1

e−ξνxi ρ(xi)∆x

=
N∑

i=1

e−ξνxi ρi ∆x ,

(7.31)

with ρi ≡ ρ(xi) and ∆x = xf/N . Thus the matrix of the model is given by

Mνi = e−ξνxi ∆x . (7.32)

Some results of the Maximum Entropy reconstruction of ρ(x) are shown in
Fig. 7.4–7.6. Figure 7.4 illustrates the influence of the noise on the quality of
the reconstruction: Due to a higher noise level that can be seen at the left–
hand column, the reconstructed peak in the plot in the first row is broarder
and smaller than that in the second. Via Eq. (7.31), the reconstruced ρ can
be used to obtain a smooth curve approximating the actual data points. This
curve is the dashed line in the plots of the left–hand column of Fig. 7.4.
In Fig. 7.5 the influence of the width of a peak on the quality of the re-
construction is depicted. The thinner the peak the poorer the agreement of
initial and reconstructed density.
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The plots in Fig. 7.6 illustrate the dependence of the resolution of two sep-
arated peaks on their separation. Two limiting cases are shown: The recon-
structed density of the left–hand plot displays two well separated peaks. In
the reconstruction of the right–hand plot, however, the smaller peak is re-
duced to a shoulder of the bigger one.

7.3.2 Abel Inversion

y

x

R

Fig. 7.7. Geometry of the Abel inversion. The density and thus the index of ab-
sorption depends only on the radius r ∈ [0, R].

In this section we illustrate the application of the Maximum Entropy principle
to another elementary physical inversion problem, this time in the field of op-
tics. The problem of the Abel inversion presupposes a cylindrically symmetric
distribution of an absorbing (or refracting) matter. The data are measured
along secants of the absorbant (c.f. Fig. 7.7) where a laser beam penetrates
the material.
We assume that the index of absorption is directly proportional to the density
denoted by ρ(r), and we suppose that the amount of the absorbed intensity is
negligible compared to the laser intensity. Then the problem becomes linear
and the absorption is proportional to the integral

A(y) =
∫ √

R2−y2

−
√

R2−y2
ρ(

√
x2 + y2) dx . (7.33)

By performing a simple substitution of variables to rewrite the integral with
measure dr, we obtain the expression
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A(y) =
∫ R

y

2r√
r2 − y2

ρ(r) dr =
∫ R

0

Θ(r − y)
2r√

r2 − y2
ρ(r) dr (7.34)

where Θ(.) denotes the unit step function. Therefore, we have cast our prob-
lem in the standard notation for linear models. With the Kernel Ky(r) it
reads

A(y) =
∫ R

0

Ky(r) ρ(r) dr , with Ky(r) = Θ(r−y)
2r√

r2 − y2
. (7.35)

The inversion of this integral is very ill posed due to the singularity of the
Kernel Ky(r) at the position r = y. A sketch of the function Ky(r) for
different values of y is given in Fig. 7.8.
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Fig. 7.8. The Kernel Ky(r) of the Abel inversion for different values of y. The
points r = y are singularities where the kernel tends towards infinity.

We need a model for the absorbing density. For simplicity we will assume a
piecewise constant function of the form

ρ(r) =
N0∑

j=1

ρj χj(r) . (7.36)

Here χj denots the characteristic function of the interval [(j−1)R/N0, jR/N0).
The continuity of the density will be accounted for by a spline interpolation.
By inserting the model (7.36) into Eq. (7.35), we obtain

A(y) =
∫ R

0

Ky(r) ρ(r) dr =
∫ R

y

2r√
r2 − y2

N0∑

j=1

ρj χj(r) . (7.37)
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The integral can be evaluated explicitly, only the bounds of integration de-
serve a carefull treatment. By exchanging sum and integral, we have

A(y) =
N0∑

j=1

ρj

∫ R

y

2r√
r2 − y2

χj(r) =
N0∑

j=1

ρj Aj(y) (7.38)

with

Aj(y) =





2
√

r2 − y2
∣∣∣
jN0/R

r=(j−1)N0/R
. . . y ≤ (j − 1)R/N0

2
√

(jR/N0)2 − y2 . . . (j − 1)R/N0 < y ≤ jR/N0

0 . . . y > jR/N0

. (7.39)

For the discretization of the y variable we choose the simplest possibility and
assume an infinitly thin laser beam that yields data at the points

yν =
(ν − 1/2)R

Nd
, ν = 1, . . . , Nd . (7.40)

Therefore, the matrix Aνj = Aj(yν) relating the data with the density reads

Aνj =





2

√
r2 −

(
ν−1/2

Nd

)2
∣∣∣∣
jN0/R

r=(j−1)N0/R

. . . ν−1/2
Nd

≤ j−1
N0

2

√(
jR
N0

)2

−
(

ν−1/2
Nd

)2

. . . j−1
N0

< ν−1/2
Nd

≤ j
N0

0 . . . ν−1/2
Nd

> j
N0

. (7.41)

In order to obtain the smooth curves for the reconstructed density, an ad-
ditional spline interpolation of the densities is introduced. The N0 values of
the density are obtained by means of a smooth interpolation from N < N0

density knots.
Since the spline interpolation is linear, it is achieved by means of a ma-
trix Sji, j = 1, . . . , N0, i = 1, . . . , N relating N0 interpolated density values
to N density knots. The actual form of S can be found in [?] The matrix M
of the model is obtaind by a matrix multiplication and reads

Mνi =
N0∑

j=1

AνjSji . (7.42)

Some results of the Abel inversion are depicted in Fig. (7.9). The data (left–
hand column) have been generated by the direct Abel transformation of the
function

ρ(r) = r2 (1− r2) +
1
5

e−250(r−1/4)2 .
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Fig. 7.9. Sampled data and reconstructed densities for four different noise levels.
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The noise has been simulated by adding a random error drawn from a normal
deviate with zero mean and standard deviation (from top to bottom) of
σ = 0.65, 0.46, 0.29, 0.17, respectively. In all plots the number of data points
is Nd = 128 and N0 = 256.
For a given number N of density knots, the nuisance parameter α is deter-
mined iteratively by resorting to the criterion χ2/Nd ≈ 1. This means that
α is adapted in such a way that the mean error of the interpolation approxi-
mately equals the standard error of the data points.
The number of intervals N is optimized by maximizing the probability
P (N |d, I) as explained in the previous Section. This strategy yields N =
5, 10, 13, 16, respectively. For N too small, no α can meet the criterion
χ2/Nd ≈ 1 because the approximation is too stiff and α → 0. Near the opti-
mal N , the nuisance parameter assumes its maximal value. When increasing
N too much, the reconstructed density begins to oscillate as α decreases.
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