Physical properties and quantum phase transitions in correlated nanochains, ladders and clusters from a combined exact diagonalization – *ab initio* approach

Adam Rycerz and Józef Spałek

Marian Smoluchowski Institute of Physics Jagiellonian University, Kraków, Poland

VIII Training Course in the Physics of Correlated Electron Systems and High– T_c Superconductors Vietri sul Mare, October 6–17, 2003

OUTLINE

- Combined exact diagonalization *ab initio* method (EDABI).
- Correlated electrons in nanochains: ground-state properties, density of states, Drude weight.
- H₄ cluter: stability in respect to dissociation on H₂ molecules.
- Hydrogen ladders: stability, optical conductivity, phase diagram.

A. Rycerz and J. Spałek, Physical properties and quantum phase transitions in correlated ...

• rapid convergence (with $N \to \infty$) of ground–state energy E_G and inverse orbital size α .

A. Rycerz and J. Spałek, *Physical properties and quantum phase transitions in correlated* ... **Spectrum of single–particle excitations** Density of states: $A_{\mathbf{k}}(\omega)$ $\mathcal{N}(\omega) = \sum_{\mathbf{k}} A_{\mathbf{k}}(\omega)$, where 1.5 $A_{\mathbf{k}}(\omega) = \sum_{n} \left| \left\langle \Psi_{n}^{N\pm1} \right| c_{\mathbf{k}\sigma}^{\pm} \left| \Psi_{0}^{N} \right\rangle \right|^{2}$ $\times \delta \left[\omega - \left(E_n^{N \pm 1} - E_0^N \right) \right];$ and $c^+_{\mathbf{k}\sigma} \equiv a^{\dagger}_{\mathbf{k}\sigma}, c^-_{\mathbf{k}\sigma} \equiv a_{\mathbf{k}\sigma}$. 100=3.0 $\leftarrow U \rightarrow$ N=10 n INTERATOMIC DIST. (a.u.) 8 DOS (arb. units) 100=8.0 al 2 $-0.5 ka \pi$ 3 -2 -1 2 ω (Ry) **BINDING ENERGY (Ry)** \Rightarrow Charge–energy gap $\Delta E_C > 0$ for $N_e = N$ (Mott insulator). \Rightarrow Scaling with $1/N \rightarrow 0$ constitutes MIT $N_e = N/2$.

A. Rycerz and J. Spałek, Physical properties and quantum phase transitions in correlated ...

A. Rycerz and J. Spałek, Physical properties and quantum phase transitions in correlated ...

Drude weight for the ladders

 \Rightarrow Molecular–crystal phase ($a \approx a_{\min}$): $D \sim e^{-N}$ (band insulator), further justification provided by ΔE_C behavior.

 \Rightarrow Dielectric catastrophe for $a \sim b \gg a_{\min}$ (band insulating and Mott insulating phases separated by highly-conducting region).

SUMMARY: Main results

- Coexistence of metallic and insulating properties for the nanochain with a half-filled band; Mott insulating state contitutes gradually with increasing a/a_0 .
- Transformation from nanometal to nanoinsulator (with charge order of CDW type) for the quarter–filling.
- The H₄ cluster and hydrogen ladders stability; molecule dissociation for high densities.
- Presence of *dielectric catastrophe* for the planar ladder, induced by the system transformation from the band–type to the Mott insulating state.