Monte Carlo simulations of quantum systems with global updates

Alejandro Muramatsu Institut für Theoretische Physik III Universität Stuttgart Spinons, holons, and antiholons in one dimension

5.1 The t-J model in one dimension

5.1 The t-J model in one dimension

Phase diagram

M. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991)

5.1 The t-J model in one dimension

Phase diagram

M. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991)

Phase diagram, with phases similar to those in high T_c superconductors

■ At J = 0

One-particle spectral function from Ogata-Shiba wavefunction

K. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

■ At J = 0

One-particle spectral function from Ogata-Shiba wavefunction

K. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

■ At J = 0

One-particle spectral function from Ogata-Shiba wavefunction

K. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

■ At J = 0

One-particle spectral function from Ogata-Shiba wavefunction

K. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

Bethe-Ansatz solution

P.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)

No correlations functions

$$H_{IS-t-J} = -\sum_{i < j,\sigma} t_{ij} (\tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} + \text{h.c.}) + \sum_{i < j} J_{ij} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right) ,$$

where at the supersymmetric (SuSy) point J = 2 t,

$$t_{ij} = J_{ij}/2 = t(\pi/L)^2 / \sin^2(\pi(i-j)/L)$$

$$H_{IS-t-J} = -\sum_{i < j,\sigma} t_{ij} (\tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} + \text{h.c.}) + \sum_{i < j} J_{ij} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right) ,$$

where at the supersymmetric (SuSy) point J = 2 t,

$$t_{ij} = J_{ij}/2 = t(\pi/L)^2 / \sin^2(\pi(i-j)/L)$$

Ground-state: Gutzwiller wavefunction

Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991)

$$H_{IS-t-J} = -\sum_{i < j,\sigma} t_{ij} (\tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} + \text{h.c.}) + \sum_{i < j} J_{ij} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right) ,$$

where at the supersymmetric (SuSy) point J = 2 t,

$$t_{ij} = J_{ij}/2 = t(\pi/L)^2 / \sin^2(\pi(i-j)/L)$$

Ground-state: Gutzwiller wavefunction

Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991)

Compact support and excitation content

Z.N.C. Ha and F.D.M. Haldane, Phys. Rev. Lett. 73, 2887 (1994)

spinon	Q=0,	S = 1/2	semion
holon	Q =+e,	S=0	semion
antiholon	Q=-2e,	S=0	boson

$$H_{IS-t-J} = -\sum_{i < j,\sigma} t_{ij} (\tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} + \text{h.c.}) + \sum_{i < j} J_{ij} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right) ,$$

where at the supersymmetric (SuSy) point J = 2 t,

$$t_{ij} = J_{ij}/2 = t(\pi/L)^2 / \sin^2(\pi(i-j)/L)$$

Ground-state: Gutzwiller wavefunction

Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991)

Compact support and excitation content

Z.N.C. Ha and F.D.M. Haldane, Phys. Rev. Lett. 73, 2887 (1994)

spinon	Q=0,	S = 1/2	semion
holon	Q=+e,	S=0	semion
antiholon	Q=-2e,	S=0	boson

Semion $\longrightarrow s_j s_\ell = i s_\ell s_j \longrightarrow$ 'half a fermion'

Spectral function for electron addition

M. Arikawa, Y. Saiga, and Y. Kuramoto, Phys. Rev. Lett. 86, 3096 (2001)

Spectral function for electron addition

M. Arikawa, Y. Saiga, and Y. Kuramoto, Phys. Rev. Lett. 86, 3096 (2001)

Analytic expressions

Analytic expressions

Spectral function for electron addition $(0 \le k < 2\pi)$

Analytic expressions

Spectral function for electron addition $(0 \le k < 2\pi)$

$$A^+(k,\omega) = A_R(k,\omega) + A_L(k,\omega) + A_U(k,\omega)$$

where

$$A_{R}(k,\omega) = \frac{1}{4\pi} \int_{0}^{k_{F}} dq_{h} \int_{0}^{k_{F}-q_{h}} dq_{s} \int_{0}^{2\pi-4k_{F}} dq_{a} \,\delta\left(k-k_{F}-q_{s}-q_{h}-q_{a}\right) \\ \times \delta\left[\omega-\epsilon_{s}(q_{s})-\epsilon_{h}(q_{h})-\epsilon_{a}(q_{a})\right] \frac{\epsilon_{s}^{g_{s}-1}(q_{s}) \,\epsilon_{h}^{g_{h}-1}(q_{h}) \,\epsilon_{a}^{g_{a}-1}(q_{a})}{\left(q_{h}+q_{a}/2\right)^{2}} \,,$$

with
$$A_L(k,\omega) = A_R(2\pi - k,\omega)$$

 $g_s = 1/2$, $g_h = 1/2$, and $g_a = 2$, statistical parameters, and

$$A_U(k,\omega) = \sqrt{\frac{\epsilon_a(k-2k_F)}{k(\pi-k/2)}} \delta\left\{\omega - \left[\epsilon_s(k_F) + \epsilon_a(k-2k_F)\right]\right\}, \quad (2k_F \le k \le 2\pi - 2k_F)$$

5.3 Spectral functions for the n.n. t-J model from QMC

C. Lavalle, M. Arikawa, S. Capponi, F.F. Assaad, and A. Muramatsu, PRL **90**, 216401, (2003)

 $A(k,\omega)$

Spinon, holons, and antiholons in the n.n. t-J model at J=2t

Excitation content of the hole spectrum at the supersymmetric point

M. Brunner, F.F. Assaad, and A. Muramatsu, Eur. Phys. J. B 16, 209 (2000)

P.-A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)
P.-A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991)

Spinon, holons, and antiholons at J = 0.5 t and n = 0.6

Antiholons at J = 0.5 t vs. doping

PSfrag replacements

- New excitation with Q = 2e, S = 0, and $m_{ah} = 2m_h$
 - \longrightarrow not charge conjugated to holons

- New excitation with Q = 2e, S = 0, and $m_{ah} = 2m_h$ \longrightarrow not charge conjugated to holons
- Antiholons are bosons with $Q = 2e \longrightarrow \text{pre-formed pairs}$?

- New excitation with Q = 2e, S = 0, and $m_{ah} = 2m_h$ \longrightarrow not charge conjugated to holons
- Antiholons are bosons with $Q = 2e \longrightarrow \text{pre-formed pairs}$?
- Can they Bose-condensed for some J and n?

- New excitation with Q = 2e, S = 0, and $m_{ah} = 2m_h$ \longrightarrow not charge conjugated to holons
- Antiholons are bosons with $Q = 2e \longrightarrow \text{pre-formed pairs}$?
- Can they Bose-condensed for some J and n?
- Can they help to understand D = 2?

Photoemission and inverse photoemission with phase separation

Discontinuous spectrum on the photoemission side

5.4 Outlook of on-going and future work

5.4 Outlook of on-going and future work

Spin and density correlation and spectral functions.
 → spin-gap and phase separation
5.4 Outlook of on-going and future work

- Spin and density correlation and spectral functions.
 → spin-gap and phase separation
- Correlation and spectral functions for superconductivity

5.4 Outlook of on-going and future work

- Spin and density correlation and spectral functions.
 → spin-gap and phase separation
- Correlation and spectral functions for superconductivity
- Feasibility of two-dimensional simulations

5.4 Outlook of on-going and future work

- Spin and density correlation and spectral functions.
 → spin-gap and phase separation
- Correlation and spectral functions for superconductivity
- Feasibility of two-dimensional simulations
- Extension to finite temperature

Minus sign problem in one dimension: non-existent for $N_{\uparrow}+N_{\downarrow}=4m+2$, with m integer

Minus sign problem in one dimension: non-existent for $N_{\uparrow} + N_{\downarrow} = 4m + 2$, with m integer

Observation: < sign >> 0.95 for $N_{\uparrow} + N_{\downarrow} = 4m$

Minus sign problem in one dimension: non-existent for $N_{\uparrow}+N_{\downarrow}=4m+2$, with m integer

Observation: < sign >> 0.95 for $N_{\uparrow} + N_{\downarrow} = 4m$

Minus sign problem in one dimension: non-existent for $N_{\uparrow}+N_{\downarrow}=4m+2$, with m integer

Observation: $\langle sign \rangle > 0.95$ for $N_{\uparrow} + N_{\downarrow} = 4m$

 $|\downarrow>$ is a barrier for holes

Minus sign problem in one dimension: non-existent for $N_{\uparrow}+N_{\downarrow}=4m+2$, with m integer

Observation: $\langle sign \rangle > 0.95$ for $N_{\uparrow} + N_{\downarrow} = 4m$

 $|\downarrow>$ is a barrier for holes

expect also less severe minus sign problem for J small, low doping, and large systems in two dimensions

• Checkerboard decomposition \longrightarrow reduction to a 2-sites problem

- Checkerboard decomposition \longrightarrow reduction to a 2-sites problem
- World-lines \longrightarrow useful in 1-D or with bosons in higher dimensions

- Checkerboard decomposition \longrightarrow reduction to a 2-sites problem
- World-lines \longrightarrow useful in 1-D or with bosons in higher dimensions
- Local moves → inefficient (large autocorrelation times), possibly non-ergodic.

- Checkerboard decomposition \longrightarrow reduction to a 2-sites problem
- World-lines \longrightarrow useful in 1-D or with bosons in higher dimensions
- Local moves → inefficient (large autocorrelation times), possibly non-ergodic.
- Fast Fourier transformation —> alternative to checkerboard decomposition.

- Checkerboard decomposition \longrightarrow reduction to a 2-sites problem
- World-lines \longrightarrow useful in 1-D or with bosons in higher dimensions
- Local moves → inefficient (large autocorrelation times), possibly non-ergodic.
- Fast Fourier transformation → alternative to checkerboard decomposition.
- Jordan-Wigner transformation → from bosons to fermions in 1-D For 2-D see

E. Frradkin, Phys. Rev. Lett. bf 63, 322 (1989)Y.R. Wang, Phys. Rev. B 43, 3786 (1991)

Loop-algorithm → particular form of cluster algorithms.
 Statistical mechanics of graphs

C. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

Loop-algorithm → particular form of cluster algorithms.
 Statistical mechanics of graphs

C. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

• Improved estimators \longrightarrow efficient reduction of noise

 Loop-algorithm → particular form of cluster algorithms. Statistical mechanics of graphs

C. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

- Improved estimators efficient reduction of noise
- Continuous imaginary time → no systematic error, very efficient for large systems
 S-1/2 Heisenberg antiferromagnet up to 10³ × 10³ sites
 J.-K. Kim and M. Troyer, Phys. Rev. Lett. 80, 2705 (1998)

 Loop-algorithm → particular form of cluster algorithms. Statistical mechanics of graphs

C. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

- Improved estimators \longrightarrow efficient reduction of noise
- Continuous imaginary time → no systematic error, very efficient for large systems
 S-1/2 Heisenberg antiferromagnet up to 10³ × 10³ sites
 J.-K. Kim and M. Troyer, Phys. Rev. Lett. 80, 2705 (1998)
- Minus-sign problem \longrightarrow eliminated in special cases with the Meron method

• t-J model —> strongly correlated fermions

- t-J model strongly correlated fermions
- Canonical transformation pseudospins + spinless holes

- t-J model strongly correlated fermions
- Canonical transformation pseudospins + spinless holes
- Single hole dynamics and loop-algorithm → exact treatment of single hole dynamics

- t-J model strongly correlated fermions
- Canonical transformation pseudospins + spinless holes
- Single hole dynamics and loop-algorithm → exact treatment of single hole dynamics
- Single hole in a 2-D quantum antiferromagnet

 → coherent quasiparticle with internal dynamics
 holons and spinons confined by string potential
 Self-consistent Born approximation agrees very well with QMC

• Hybrid-loop algorithm — new algorithm for doped antiferromagnets

- Hybrid-loop algorithm new algorithm for doped antiferromagnets
- Loop-algorithm pseudospins

- Hybrid-loop algorithm new algorithm for doped antiferromagnets
- Loop-algorithm pseudospins
- Determinantal algorithm holes

- Hybrid-loop algorithm new algorithm for doped antiferromagnets
- Loop-algorithm pseudospins
- Determinantal algorithm holes
- Stabilization \longrightarrow like in simulations of the Hubbard model

- Hybrid-loop algorithm —> new algorithm for doped antiferromagnets
- Loop-algorithm pseudospins
- Determinantal algorithm holes
- Stabilization \longrightarrow like in simulations of the Hubbard model
- Static and dynamical correlation functions —> spectral functions

• t-J model in 1-D \longrightarrow rich phase diagram reminiscent of high T_C superconductors

- t-J model in 1-D \longrightarrow rich phase diagram reminiscent of high T_C superconductors
- $1/r^2$ t-J model \longrightarrow free excitations with fractional statistics

- t-J model in 1-D \longrightarrow rich phase diagram reminiscent of high T_C superconductors
- $1/r^2$ t-J model \longrightarrow free excitations with fractional statistics
- One-particle spectral functions \longrightarrow QMC for the nearest neighbor t-J model vs. analytical results for the $1/r^2$ t-J model

- t-J model in 1-D \longrightarrow rich phase diagram reminiscent of high T_C superconductors
- $1/r^2$ t-J model \longrightarrow free excitations with fractional statistics
- One-particle spectral functions \longrightarrow QMC for the nearest neighbor t-J model vs. analytical results for the $1/r^2$ t-J model
- Antiholon \longrightarrow new generic excitation of the nearest neighbor t-J model
Collaborators

- Dr. Michael Brunner (HypoVereinsbank-München)
- Dr. Catia Lavalle (University of Stuttgart)
- Dr. Sylvain Capponi (Université Paul Sabatier, Toulouse)
- Dr. Mitsuhiro Arikawa (University of Stuttgart)
- Prof. Dr. Fakher F. Assaad (University of Würzburg)