Monte Carlo simulations of quantum systems with global updates

Alejandro Muramatsu Institut für Theoretische Physik III Universität Stuttgart

Fermionic systems with strong correlations

The t-J model

Fermionic systems with strong correlations

The t-J model

3.1 Strong correlations in systems with localized orbitals

3.1 Strong correlations in systems with localized orbitals

Start with the general Hamiltonian for electrons with Coulomb interaction

$$H = \sum_{\substack{i,j \\ \sigma}} c_{i,\sigma}^{\dagger} < i \mid T \mid j > c_{j,\sigma} + \frac{1}{2} \sum_{\substack{i,j,k,\ell \\ \sigma,\sigma'}} c_{i,\sigma}^{\dagger} c_{j,\sigma'}^{\dagger} < i,j \mid V \mid k,\ell > c_{k,\sigma'} c_{\ell,\sigma}$$

 $|i, \sigma \rangle \longrightarrow$ Wannier states

3.1 Strong correlations in systems with localized orbitals

Start with the general Hamiltonian for electrons with Coulomb interaction

$$H = \sum_{\substack{i,j \\ \sigma}} c_{i,\sigma}^{\dagger} < i \mid T \mid j > c_{j,\sigma} + \frac{1}{2} \sum_{\substack{i,j,k,\ell \\ \sigma,\sigma'}} c_{i,\sigma}^{\dagger} c_{j,\sigma'}^{\dagger} < i,j \mid V \mid k,\ell > c_{k,\sigma'} c_{\ell,\sigma}$$

 $|i, \sigma \rangle \longrightarrow$ Wannier states

Matrix element for the Coulomb interaction

$$< i, j \mid V \mid k, \ell >$$

$$= \int d^3x \, d^3x' \, \frac{\varphi_{\sigma}^* \left(\boldsymbol{x} - \boldsymbol{R}_i \right) \, \varphi_{\sigma'}^* \left(\boldsymbol{x}' - \boldsymbol{R}_j \right) \, \varphi_{\sigma'} \left(\boldsymbol{x}' - \boldsymbol{R}_k \right) \, \varphi_{\sigma} \left(\boldsymbol{x} - \boldsymbol{R}_\ell \right) }{\mid \boldsymbol{x} - \boldsymbol{x}' \mid}$$

Consider for simplicity the case of a single band.

Consider for simplicity the case of a single band.

Restrict to one-center integrals $\longrightarrow i = j = k = \ell$

$$\frac{1}{2} \sum_{\substack{i \\ \sigma,\sigma'}} c_{i,\sigma}^{\dagger} c_{i,\sigma'}^{\dagger} < i, i \mid V \mid i, i > c_{i,\sigma'} c_{i,\sigma} = U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

where $\hat{n}_{i,\sigma} = c_{i,\sigma}^{\dagger} c_{i,\sigma}$ and $U \equiv \langle i, i | V | i, i \rangle$.

Consider for simplicity the case of a single band.

Restrict to one-center integrals $\longrightarrow i = j = k = \ell$

$$\frac{1}{2} \sum_{\substack{i \\ \sigma,\sigma'}} c_{i,\sigma}^{\dagger} c_{i,\sigma'}^{\dagger} < i, i \mid V \mid i, i > c_{i,\sigma'} c_{i,\sigma} = U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

where
$$\hat{n}_{i,\sigma} = c^{\dagger}_{i,\sigma}c_{i,\sigma}$$
 and $U \equiv \langle i,i | V | i,i \rangle$.

Hubbard model

$$H_{Hubbard} = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

where $-t \equiv \langle i \mid T \mid j \rangle$

Consider for simplicity the case of a single band.

Restrict to one-center integrals $\longrightarrow i = j = k = \ell$

$$\frac{1}{2}\sum_{\substack{i\\\sigma,\sigma'}} c_{i,\sigma}^{\dagger} c_{i,\sigma'}^{\dagger} < i, i \mid V \mid i, i > c_{i,\sigma'} c_{i,\sigma} = U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

where
$$\hat{n}_{i,\sigma} = c^{\dagger}_{i,\sigma}c_{i,\sigma}$$
 and $U \equiv \langle i,i | V | i,i \rangle$.

Hubbard model

$$H_{Hubbard} = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$

where $-t \equiv \langle i \mid T \mid j \rangle$

Model for itinerant magnetism, antiferromagnetism, high temperature superconductivity and degenerate quantum gases on optical lattices

Consider now the limit $U \longrightarrow \infty$

- Consider now the limit $U \longrightarrow \infty$
- \hookrightarrow Degenerate perturbation theory around $U = \infty$ in the subspace of singly occupied sites.

Consider now the limit $U \longrightarrow \infty$

 \hookrightarrow Degenerate perturbation theory around $U = \infty$ in the subspace of singly occupied sites.

Perturbation

$$T = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} c_{i,\sigma}^{\dagger} c_{j,\sigma}$$

Projectors

- P to the subspace of singly occupied sites $\longrightarrow \{ | 0 >, |\uparrow >, |\downarrow > \}$
- Q to the complementary subspace $\longrightarrow |\uparrow\downarrow>$

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} , \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \, \tilde{c}_{j,\sigma} \,, \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} , \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

$$\hookrightarrow PT \frac{Q}{E_P - E_Q} TP = 2$$
 sites terms + 3 sites terms

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \, \tilde{c}_{j,\sigma} \,, \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

Second order

$$\hookrightarrow PT \frac{Q}{E_P - E_Q} TP = 2$$
 sites terms + 3 sites terms

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \, \tilde{c}_{j,\sigma} \,, \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

Second order

$$\hookrightarrow PT \frac{Q}{E_P - E_Q}TP = 2$$
 sites terms + 3 sites terms

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \, \tilde{c}_{j,\sigma} \,, \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

$$\hookrightarrow PT \frac{Q}{E_P - E_Q}TP = 2$$
 sites terms + 3 sites terms

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \, \tilde{c}_{j,\sigma} \,, \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

$$\hookrightarrow PT \frac{Q}{E_P - E_Q}TP = 2$$
 sites terms + 3 sites terms

$$\hookrightarrow PTP = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \, \tilde{c}_{j,\sigma} \,, \qquad \text{where } \tilde{c}_{j,\sigma} = c_{j,\sigma}P$$

$$\hookrightarrow PT \frac{Q}{E_P - E_Q}TP = 2$$
 sites terms + 3 sites terms

assisted and pair hopping.

assisted and pair hopping.

t-J model

$$H_{t-J} = -t \sum_{\substack{\langle i,j \rangle \\ \sigma}} \tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{j,\sigma} + J \sum_{\substack{\langle i,j \rangle \\ \langle i,j \rangle}} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right)$$

with the constraint $n_i \leq 1$

However, we can consider the model on its own right, i.e. for arbitrary parameter J/t

However, we can consider the model on its own right, i.e. for arbitrary parameter J/t

Zhang-Rice singlet for CuO₂ **plaquettes in high T**_c **superconductors** F.C. Zhang and T.M. Rice, Phys. Rev. **37**, 3759 (1988)

However, we can consider the model on its own right, i.e. for arbitrary parameter J/t

Zhang-Rice singlet for CuO₂ **plaquettes in high T**_c **superconductors** F.C. Zhang and T.M. Rice, Phys. Rev. **37**, 3759 (1988)

 $\textbf{YBa}_2\textbf{Cu}_3\textbf{O}_7$

From the derivation we followed, $J \ll t$

However, we can consider the model on its own right, i.e. for arbitrary parameter J/t

Zhang-Rice singlet for CuO₂ **plaquettes in high T**_c **superconductors** F.C. Zhang and T.M. Rice, Phys. Rev. **37**, 3759 (1988)

 $\textbf{YBa}_2\textbf{Cu}_3\textbf{O}_7$

Physical value $J \sim 0.3 - 0.5t$

• For J=0 is equivalent to the Hubbard model at U= ∞

• For J=0 is equivalent to the Hubbard model at $U=\infty$ \longrightarrow Bethe-Ansatz solution in one dimension

E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

- For J=0 is equivalent to the Hubbard model at U=∞
 → Bethe-Ansatz solution in one dimension
 E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)
- For J=2t (supersymmetric point) Bethe-Ansatz solution in one dimension
 - P.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)
 - P.A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991)

- For J=0 is equivalent to the Hubbard model at U=∞
 → Bethe-Ansatz solution in one dimension
 E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)
- For J=2t (supersymmetric point) Bethe-Ansatz solution in one dimension
 P.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)
 P.A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991)
- In general, exact diagonalization → 2 holes on 32 sites
 P.W. Leung and R.J. Gooding, Phys. Rev. B 52, R15711 (1995)

- For J=0 is equivalent to the Hubbard model at U=∞
 → Bethe-Ansatz solution in one dimension
 E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)
- For J=2t (supersymmetric point) Bethe-Ansatz solution in one dimension
 P.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)
 P.A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991)
- In general, exact diagonalization → 2 holes on 32 sites
 P.W. Leung and R.J. Gooding, Phys. Rev. B 52, R15711 (1995)

QMC simulations

M. Calandra and S. Sorella, Phys. Rev. B 61, R11894 (2000)

Standard t-J model

$$H_{t-J} = -t \sum_{\langle ij \rangle} \tilde{c}_{i\sigma}^{\dagger} \tilde{c}_{j\sigma} + J \sum_{\langle ij \rangle} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right).$$

with constraint $n_i \leq 1$.

Standard t-J model

$$H_{t-J} = -t \sum_{\langle ij \rangle} \tilde{c}_{i\sigma}^{\dagger} \tilde{c}_{j\sigma} + J \sum_{\langle ij \rangle} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right)$$

with constraint $n_i \leq 1$.

Mapping to S-1/2 pseudospins and spinless fermions.

G. Khaliullin, JETP Lett. 52, 389 (1990); A. Angelucci, Phys. Rev. B 51, 11580 (1995).

Standard t-J model

$$H_{t-J} = -t \sum_{\langle ij \rangle} \tilde{c}_{i\sigma}^{\dagger} \tilde{c}_{j\sigma} + J \sum_{\langle ij \rangle} \left(\boldsymbol{S}_i \cdot \boldsymbol{S}_j - \frac{1}{4} \tilde{n}_i \tilde{n}_j \right)$$

with constraint $n_i \leq 1$.

Mapping to S-1/2 pseudospins and spinless fermions.

G. Khaliullin, JETP Lett. 52, 389 (1990); A. Angelucci, Phys. Rev. B 51, 11580 (1995).

$$\implies$$

$$c_{i\uparrow}^{\dagger} = \gamma_{i+}f_i - \gamma_{i-}f_i^{\dagger}, \quad c_{i\downarrow}^{\dagger} = \sigma_{i-}(f_i + f_i^{\dagger})$$

where $\gamma_{i\pm} = (1 \pm \sigma_i^z)/2$ and $\sigma_i^{\pm} = (\sigma_i^x \pm i\sigma_i^y)/2$

$$\tilde{H}_{t-J} = +t \sum_{\langle ij \rangle} P_{ij} f_i^{\dagger} f_j + \frac{J}{2} \sum_{\langle ij \rangle} \Delta_{ij} (P_{ij} - 1),$$

where $P_{ij} = (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)/2$, $\Delta_{ij} = (1 - n_i - n_j)$ and $n_i = f_i^{\dagger} f_i$.

$$\tilde{H}_{t-J} = +t \sum_{\langle ij \rangle} P_{ij} f_i^{\dagger} f_j + \frac{J}{2} \sum_{\langle ij \rangle} \Delta_{ij} (P_{ij} - 1),$$

where $P_{ij} = (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)/2$, $\Delta_{ij} = (1 - n_i - n_j)$ and $n_i = f_i^{\dagger} f_i$.

 \implies Hamiltonian is bilinear in fermions

$$\tilde{H}_{t-J} = +t \sum_{\langle ij \rangle} P_{ij} f_i^{\dagger} f_j + \frac{J}{2} \sum_{\langle ij \rangle} \Delta_{ij} (P_{ij} - 1),$$

where $P_{ij} = (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)/2$, $\Delta_{ij} = (1 - n_i - n_j)$ and $n_i = f_i^{\dagger} f_i$.

 \implies Hamiltonian is bilinear in fermions

Constraint

$$c^{\dagger}_{i\downarrow}c^{\dagger}_{i\uparrow}|0>_{i}\Longrightarrow f^{\dagger}_{i}\sigma^{-}_{i}|v>_{i}\Longleftrightarrow |1,\Downarrow>_{i}$$

$$\tilde{H}_{t-J} = +t \sum_{\langle ij \rangle} P_{ij} f_i^{\dagger} f_j + \frac{J}{2} \sum_{\langle ij \rangle} \Delta_{ij} (P_{ij} - 1),$$

where $P_{ij} = (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)/2$, $\Delta_{ij} = (1 - n_i - n_j)$ and $n_i = f_i^{\dagger} f_i$.

 \implies Hamiltonian is bilinear in fermions

Constraint

$$c_{i\downarrow}^{\dagger} e_{i\uparrow}^{\dagger} | 0 >_{i} \Longrightarrow f_{i}^{\dagger} \sigma_{i}^{-} | v >_{i} \Longleftrightarrow | 1, \Downarrow >_{i}$$

Holonomic constraint: $Q \equiv \sum_{i} (1 - \sigma_{iz}) f_i^{\dagger} f_i = 0$

$$\tilde{H}_{t-J} = +t \sum_{\langle ij \rangle} P_{ij} f_i^{\dagger} f_j + \frac{J}{2} \sum_{\langle ij \rangle} \Delta_{ij} (P_{ij} - 1),$$

where $P_{ij} = (1 + \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)/2$, $\Delta_{ij} = (1 - n_i - n_j)$ and $n_i = f_i^{\dagger} f_i$.

→ Hamiltonian is bilinear in fermions

Constraint

$$c_{i\downarrow}^{\dagger} e_{i\uparrow}^{\dagger} | 0 >_{i} \Longrightarrow f_{i}^{\dagger} \sigma_{i}^{-} | v >_{i} \Longleftrightarrow | 1, \Downarrow >_{i}$$

• Holonomic constraint: $Q \equiv \sum_{i} (1 - \sigma_{iz}) f_i^{\dagger} f_i = 0$

 $\blacksquare \left[\mathcal{Q}, \tilde{H}_{t-J} \right] = 0 \Longrightarrow \text{States evolve in the physical subspace}$

3.3 Single hole dynamics and loop-algorithm

M. Brunner, F.F. Assaad, and A. Muramatsu, Phys. Rev. B 62, 15480 (2000)

3.3 Single hole dynamics and loop-algorithm

M. Brunner, F.F. Assaad, and A. Muramatsu, Phys. Rev. B 62, 15480 (2000)

One-particle Green's function

$$G_{\uparrow}(i-j,\tau) = \langle T\tilde{c}_{i\uparrow}(\tau)\tilde{c}_{j\uparrow}^{\dagger} \rangle = \langle Tf_i^{\dagger}(\tau)f_j \rangle$$

3.3 Single hole dynamics and loop-algorithm

M. Brunner, F.F. Assaad, and A. Muramatsu, Phys. Rev. B 62, 15480 (2000)

One-particle Green's function

$$G_{\uparrow}(i-j,\tau) = \langle T\tilde{c}_{i\uparrow}(\tau)\tilde{c}_{j\uparrow}^{\dagger} \rangle = \langle Tf_{i}^{\dagger}(\tau)f_{j} \rangle$$

Inserting complete sets of spin states \longrightarrow

$$- G(i-j,-\tau) = \frac{\sum_{\sigma_1} \langle v | \otimes \langle \sigma_1 | e^{-(\beta-\tau)\tilde{H}_{t-J}} f_j e^{-\tau\tilde{H}_{t-J}} f_i^{\dagger} | \sigma_1 \rangle \otimes | v \rangle}{\sum_{\sigma_1} \langle \sigma_1 | e^{-\beta\tilde{H}_{t-J}} | \sigma_1 \rangle}$$

$$= \sum_{\sigma} P(\sigma) \frac{\langle v | f_j e^{-\Delta\tau\tilde{H}(\sigma_n,\sigma_{n-1})} e^{-\Delta\tau\tilde{H}(\sigma_{n-1},\sigma_{n-2})} \dots e^{-\Delta\tau\tilde{H}(\sigma_2,\sigma_1)} f_i^{\dagger} | v \rangle}{\langle \sigma_n | e^{-\Delta\tau\tilde{H}_{t-J}} | \sigma_{n-1} \rangle \dots \langle \sigma_2 e^{-\Delta\tau\tilde{H}_{t-J}} | \sigma_1 \rangle}$$

$$= \sum_{\sigma} P(\sigma) G(i,j,\tau,\sigma) + \mathcal{O}(\Delta\tau^2)$$

■ $P(\sigma)$: probability distribution of a Heisenberg antiferromagnet. ⇒ Sum over spins → world-line loop-algorithm.

• Restricted to n holes for a n-holes propagator.

- Restricted to n holes for a n-holes propagator.
- Error $\mathcal{O}\left(\Delta\tau^2\right)$, otherwise exact

- Restricted to n holes for a n-holes propagator.
- Error $\mathcal{O}\left(\Delta \tau^2\right)$, otherwise exact
- Efficient spin sampling (loop-algorithm)

- Restricted to n holes for a n-holes propagator.
- Error $\mathcal{O}\left(\Delta\tau^2\right)$, otherwise exact
- Efficient spin sampling (loop-algorithm)
- Exact evolution of the hole given a spin background

- Restricted to n holes for a n-holes propagator.
- Error $\mathcal{O}\left(\Delta\tau^2\right)$, otherwise exact
- Efficient spin sampling (loop-algorithm)
- Exact evolution of the hole given a spin background
- No minus-sign problem

- Restricted to n holes for a n-holes propagator.
- Error $\mathcal{O}\left(\Delta\tau^2\right)$, otherwise exact
- Efficient spin sampling (loop-algorithm)
- Exact evolution of the hole given a spin background
- No minus-sign problem
- Imaginary-time propagator —> spectral functions

- Restricted to n holes for a n-holes propagator.
- Error $\mathcal{O}\left(\Delta\tau^2\right)$, otherwise exact
- Efficient spin sampling (loop-algorithm)
- Exact evolution of the hole given a spin background
- No minus-sign problem
- Imaginary-time propagator —> spectral functions
- Accurate determination of the quasiparticle weight

One-particle spectral function and the Green's function in imaginary time

$$G(\mathbf{k},\tau) = \int_{-\infty}^{\infty} d\omega \, \frac{\mathrm{e}^{-\omega\tau}}{1 + \mathrm{e}^{-\beta\omega}} \, A(\mathbf{k},\omega)$$

One-particle spectral function and the Green's function in imaginary time

$$G(\mathbf{k},\tau) = \int_{-\infty}^{\infty} d\omega \, \frac{\mathrm{e}^{-\omega\tau}}{1 + \mathrm{e}^{-\beta\omega}} \, A(\mathbf{k},\omega)$$

 \hookrightarrow ill-defined inversion problem

One-particle spectral function and the Green's function in imaginary time

$$G(\mathbf{k},\tau) = \int_{-\infty}^{\infty} d\omega \, \frac{\mathrm{e}^{-\omega\tau}}{1 + \mathrm{e}^{-\beta\omega}} A(\mathbf{k},\omega)$$

\hookrightarrow ill-defined inversion problem

Maximum-entropy \longrightarrow probabilistic estimation of $A(\mathbf{k}, \omega)$ M. Jarrell and J.E. Gubernatis, Physics Reports **269**, 133 (1996)

One-particle spectral function and the Green's function in imaginary time

$$G(\mathbf{k},\tau) = \int_{-\infty}^{\infty} d\omega \, \frac{\mathrm{e}^{-\omega\tau}}{1 + \mathrm{e}^{-\beta\omega}} \, A(\mathbf{k},\omega)$$

\hookrightarrow ill-defined inversion problem

Maximum-entropy \longrightarrow probabilistic estimation of $A(\mathbf{k}, \omega)$ M. Jarrell and J.E. Gubernatis, Physics Reports **269**, 133 (1996)

Need very accurate data and consistency checks

3.4.1 Excitations in an antiferromagnetic chain: spinons

3.4.1 Excitations in an antiferromagnetic chain: spinons

In general, a magnon is a magnetic excitation $S^+ \mid AF >$

3.4.1 Excitations in an antiferromagnetic chain: spinons

In general, a magnon is a magnetic excitation $S^+ \mid AF >$

3.4.1 Excitations in an antiferromagnetic chain: spinons

3.4.1 Excitations in an antiferromagnetic chain: spinons

In general, a magnon is a magnetic excitation $S^+ \mid AF >$

A magnon decays into two spinons with Q = 0 and S = 1/2

3.4.1 Excitations in an antiferromagnetic chain: spinons

In general, a magnon is a magnetic excitation $S^+ \mid AF >$

A magnon decays into two spinons with ${\cal Q}=0$ and ${\cal S}=1/2$

Spinons as free excitations

$$H_H = J \sum_{\langle i,j \rangle} \boldsymbol{S}_i \cdot \boldsymbol{S}_j = -\frac{J}{2} \sum_{\substack{\langle i,j \rangle \\ \alpha,\beta}} c_{i\alpha}^{\dagger} c_{j\alpha} c_{i\beta}^{\dagger} c_{j\beta}$$

3.4.1 Excitations in an antiferromagnetic chain: spinons

In general, a magnon is a magnetic excitation $S^+ \mid AF >$

A magnon decays into two spinons with ${\cal Q}=0$ and ${\cal S}=1/2$

Spinons as free excitations

$$H_H = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = -\frac{J}{2} \sum_{\substack{\langle i,j \rangle \\ \alpha,\beta}} c_{i\alpha}^{\dagger} c_{j\alpha} c_{i\beta}^{\dagger} c_{j\beta} \simeq -\frac{J}{2} \langle c_i^{\dagger} c_j \rangle \sum_{\substack{\langle i,j \rangle \\ \alpha}} c_{i\alpha}^{\dagger} c_{j\alpha} c_{j\alpha} c_{i\beta}^{\dagger} c_{j\beta} \simeq -\frac{J}{2} \langle c_i^{\dagger} c_j \rangle \sum_{\substack{\langle i,j \rangle \\ \alpha}} c_{i\alpha}^{\dagger} c_{j\alpha} c_{j\alpha} c_{i\beta} c_{j\alpha} c_{j\alpha} c_{i\beta} c_{j\alpha} c_{i\beta} c_{j\alpha} c_{i\beta} c_{j\alpha} c_{j\alpha} c_{i\beta} c_{j\alpha} c_$$

3.4.1 Excitations in an antiferromagnetic chain: spinons

In general, a magnon is a magnetic excitation $S^+ \mid AF >$

A magnon decays into two spinons with ${\cal Q}=0$ and ${\cal S}=1/2$

Spinons as free excitations

$$\begin{split} H_{H} &= J \sum_{\langle i,j \rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j} = -\frac{J}{2} \sum_{\substack{\langle i,j \rangle \\ \alpha,\beta}} c_{i\alpha}^{\dagger} c_{j\alpha} c_{i\beta}^{\dagger} c_{j\beta} \simeq -\frac{J}{2} \langle c_{i}^{\dagger} c_{j} \rangle \sum_{\substack{\langle i,j \rangle \\ \alpha}} c_{i\alpha}^{\dagger} c_{j\alpha} \\ &= \sum_{k} \epsilon_{s}(k) c_{k\alpha}^{\dagger} c_{k\alpha} \quad \text{with} \quad \epsilon_{s}(k) = -J \langle c_{i}^{\dagger} c_{j} \rangle \cos ka \end{split}$$

Magnon as a composite excitation

$$E_M(Q_M) = \epsilon_s(q_1) + \epsilon_s(q_2) , \qquad Q_M = q_1 + q_2 + \pi$$

with

$$\epsilon_s(q) = J \cos qa , \qquad -\frac{\pi}{2} \le q \le \frac{\pi}{2}$$

Magnon as a composite excitation

$$E_M(Q_M) = \epsilon_s(q_1) + \epsilon_s(q_2) , \qquad Q_M = q_1 + q_2 + \pi$$

with

$$\epsilon_s(q) = J \cos qa , \qquad -\frac{\pi}{2} \le q \le \frac{\pi}{2}$$

Two spinon continuum

Magnon as a composite excitation

$$E_M(Q_M) = \epsilon_s(q_1) + \epsilon_s(q_2) , \qquad Q_M = q_1 + q_2 + \pi$$

with

$$\epsilon_s(q) = J \cos qa , \qquad -\frac{\pi}{2} \le q \le \frac{\pi}{2}$$

Two spinon continuum

$$E_M^{max} = J\sqrt{2(1-\cos Q)}$$
$$E_M^{min} = J\sin Q$$

3.4.2 Charge-spin separation in a doped AF chain: spinons + holons

New excitation: holon with Q = -e and S = 0

New excitation: holon with Q = -e and S = 0

Charge-spin separation Ansatz: $c_{i\sigma} = s_{i\sigma} h_i^{\dagger}$

New excitation: holon with $Q=-e \mbox{ and } S=0$

Charge-spin separation Ansatz: $c_{i\sigma} = s_{i\sigma}h_i^{\dagger}$

Dispersion relations:

holon: $\epsilon_h = -2t \cos q_h$ spinons: $\epsilon_s = -J \cos q_h$, $-\frac{\pi}{2} \le q \le \frac{\pi}{2}$

New excitation: holon with Q = -e and S = 0

Charge-spin separation Ansatz: $c_{i\sigma} = s_{i\sigma}h_i^{\dagger}$

Dispersion relations:

holon: $\epsilon_h = -2t \cos q_h$

spinons: $\epsilon_s = -J \cos q_h$, $-\frac{\pi}{2} \le q \le \frac{\pi}{2}$

Energy and momenta of a hole

 $E(k) = \epsilon_h(q_h) - \epsilon_s(q_s)$, with $k = q_h - q_s$

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge → spinon (holon)
- Upper edge → holon (spinon)

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge → spinon (holon)
- Upper edge → holon (spinon)
- Spinon lower edge $(k < k_0) \longrightarrow E(k) = -\sqrt{J^2 + 4t^2 4tJ\cos k}$

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge → spinon (holon)
- Upper edge → holon (spinon)
- Spinon lower edge $(k < k_0) \longrightarrow E(k) = -\sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon lower edge $(k > k_0) \longrightarrow E(k) = -2t \sin k$

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge → spinon (holon)
- Upper edge → holon (spinon)
- Spinon lower edge $(k < k_0) \longrightarrow E(k) = -\sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon lower edge $(k > k_0) \longrightarrow E(k) = -2t \sin k$
- Spinon upper edge $(k > k_0) \longrightarrow E(k) = \sqrt{J^2 + 4t^2 4tJ\cos k}$

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge → spinon (holon)
- Upper edge → holon (spinon)
- Spinon lower edge $(k < k_0) \longrightarrow E(k) = -\sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon lower edge $(k > k_0) \longrightarrow E(k) = -2t \sin k$
- Spinon upper edge $(k > k_0) \longrightarrow E(k) = \sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon upper edge $(k < k_0) \longrightarrow E(k) = 2t \sin k$

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge \rightarrow spinon (holon)
- Upper edge → holon (spinon)
- Spinon lower edge $(k < k_0) \longrightarrow E(k) = -\sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon lower edge $(k > k_0) \longrightarrow E(k) = -2t \sin k$
- Spinon upper edge $(k > k_0) \longrightarrow E(k) = \sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon upper edge $(k < k_0) \longrightarrow E(k) = 2t \sin k$
- For J = 2t, $k_0 = 0 \longrightarrow$ lower edge of the compact support entirely determined by the dispersion of the holon.

• For
$$k < k_0$$
 ($k > k_0$), $k_0 = \arccos(J/2t)$

- Lower edge \rightarrow spinon (holon)
- Upper edge → holon (spinon)
- Spinon lower edge $(k < k_0) \longrightarrow E(k) = -\sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon lower edge $(k > k_0) \longrightarrow E(k) = -2t \sin k$
- Spinon upper edge $(k > k_0) \longrightarrow E(k) = \sqrt{J^2 + 4t^2 4tJ\cos k}$
- Holon upper edge $(k < k_0) \longrightarrow E(k) = 2t \sin k$
- For J = 2t, $k_0 = 0 \longrightarrow$ lower edge of the compact support entirely determined by the dispersion of the holon.
- At J = 2t the whole weight is concentrated on one point.

Spectral function from QMC simulations

M. Brunner, F.F. Assaad, and A. Muramatsu, Eur. Phys. J. B 16, 209 (2000)

Spectral function from QMC simulations

M. Brunner, F.F. Assaad, and A. Muramatsu, Eur. Phys. J. B 16, 209 (2000)

Full lines: compact support

At the supersymmetric point
At the supersymmetric point

At k = 0 all the weight is concentrated on one point

Non-interacting fermions

Non-interacting fermions

Green's function

$$G(\mathbf{k},\omega) = \left[\frac{\theta(k-k_F)}{\omega-\mu-\epsilon_{\mathbf{k}}+i\eta} + \frac{\theta(k_F-k)}{\omega-\mu+\epsilon_{\mathbf{k}}-i\eta}\right]$$

Non-interacting fermions

Green's function

$$G(\mathbf{k},\omega) = \left[\frac{\theta(k-k_F)}{\omega-\mu-\epsilon_{\mathbf{k}}+i\eta} + \frac{\theta(k_F-k)}{\omega-\mu+\epsilon_{\mathbf{k}}-i\eta}\right]$$

Quasiparticle weight $z(\mathbf{k}) = 1$

Formal solution

$$G = \left[G^{(0)^{-1}} - \Sigma^* \right]^{-1}$$

Formal solution

$$G = \left[G^{(0)^{-1}} - \Sigma^* \right]^{-1}$$

For a homogeneous system or a lattice model

$$G(\boldsymbol{k},\omega) = \frac{1}{\hbar\omega - \mu - \epsilon_{\boldsymbol{k}}^{0} - \Sigma^{*}(\boldsymbol{k},\omega)}$$

Formal solution

$$G = \left[G^{(0)^{-1}} - \Sigma^* \right]^{-1}$$

For a homogeneous system or a lattice model

$$G(\boldsymbol{k},\omega) = \frac{1}{\hbar\omega - \mu - \epsilon_{\boldsymbol{k}}^{0} - \Sigma^{*}(\boldsymbol{k},\omega)}$$

Renormalized energies due to interaction

$$\epsilon_{\boldsymbol{k}} = \epsilon_{\boldsymbol{k}}^{0} + \operatorname{Re}\tilde{\Sigma}\left(\boldsymbol{k},\omega\right)$$

Formal solution

$$G = \left[G^{(0)^{-1}} - \Sigma^* \right]^{-1}$$

For a homogeneous system or a lattice model

$$G(\mathbf{k},\omega) = \frac{1}{\hbar\omega - \mu - \epsilon_{\mathbf{k}}^{0} - \Sigma^{*}(\mathbf{k},\omega)}$$

Renormalized energies due to interaction

$$\epsilon_{\boldsymbol{k}} = \epsilon_{\boldsymbol{k}}^{0} + \operatorname{Re}\tilde{\Sigma}\left(\boldsymbol{k},\omega\right)$$

Lifetime due to interaction

$$G\left(\boldsymbol{k},\omega\right) = \frac{z\left(\boldsymbol{k}\right)}{\hbar\omega - \mu - \epsilon_{\boldsymbol{k}} + i\Gamma} + G_{inc}$$

$$G_{c}\left(oldsymbol{k},\omega
ight) ~=~ rac{z\left(oldsymbol{k}
ight)}{\omega-\mu-\epsilon_{oldsymbol{k}}+i\Gamma}$$

$$G_{c}\left(oldsymbol{k},\omega
ight) \ = \ rac{z\left(oldsymbol{k}
ight)}{\omega-\mu-\epsilon_{oldsymbol{k}}+i\Gamma}$$

 G_{inc} : non-singular part

$$G_{c}\left(oldsymbol{k},\omega
ight) \;\;=\;\; rac{z\left(oldsymbol{k}
ight)}{\omega-\mu-\epsilon_{oldsymbol{k}}+i\Gamma}$$

G_{inc} : non-singular part

Coherently propagating particle for times $t < 1/\Gamma$

$$G_{c}(\boldsymbol{k},t) = \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-i\omega t} \frac{z(\boldsymbol{k})}{\omega - \mu - \epsilon_{\boldsymbol{k}} + i\Gamma}$$

$$G_{c}\left(oldsymbol{k},\omega
ight) \ = \ rac{z\left(oldsymbol{k}
ight)}{\omega-\mu-\epsilon_{oldsymbol{k}}+i\Gamma}$$

G_{inc} : non-singular part

Coherently propagating particle for times $t < 1/\Gamma$

$$G_{c}(\boldsymbol{k},t) = \int_{-\infty}^{\infty} d\omega e^{-i\omega t} \frac{z(\boldsymbol{k})}{\omega - \mu - \epsilon_{\boldsymbol{k}} + i\Gamma}$$

$$\sim z(\boldsymbol{k}) \exp\left\{-i\left(\mu + \epsilon_{\boldsymbol{k}} - i\Gamma\right)t\right\}$$

$$G_{c}\left(oldsymbol{k},\omega
ight) \;\;=\;\; rac{z\left(oldsymbol{k}
ight)}{\omega-\mu-\epsilon_{oldsymbol{k}}+i\Gamma}$$

G_{inc} : non-singular part

Coherently propagating particle for times $t < 1/\Gamma$

$$G_{c}(\boldsymbol{k},t) = \int_{-\infty}^{\infty} d\omega e^{-i\omega t} \frac{z(\boldsymbol{k})}{\omega - \mu - \epsilon_{\boldsymbol{k}} + i\Gamma}$$

$$\sim z(\boldsymbol{k}) \exp\left\{-i\left(\mu + \epsilon_{\boldsymbol{k}} - i\Gamma\right)t\right\}$$

Quasiparticle weight from QMC simulations

Quasiparticle weight from QMC simulations

In imaginary time

$$\lim_{\tau \to \infty} G(k,\tau) \propto z(k) \exp\left[\tau \left(E_0^N - E_0^{N-1}(k)\right)\right]$$

Quasiparticle weight from QMC simulations

In imaginary time PSfrag replacements

 $\frac{\pi}{2} \lim_{\to \infty} G(k,\tau) \propto z(k) \exp\left[\tau \left(E_0^N - E_0^{N-1}(k)\right)\right]$

3.5 Single hole dynamics in 2-D

M. Brunner, F.F. Assaad, and A. Muramatsu, Phys. Rev. B 62, 15480 (2000)

J = 0.4 t

J = 2 t

Quasiparticle weight for a hole in the square lattice

- 2

Full lines:Self-consistent Born approximationG. Martínez and P. Horsch, Phys. Rev. 44, 317 (1991)

Resonances in the spectrum

Resonances in the spectrum

Resonances in the spectrum

In the continuum limit

$$H_{string} = -t\frac{\partial^2}{\partial x^2} + Jx - 2\sqrt{3}t$$

Eigenvalues

$$E_{i} = a_{i} \left(\frac{J}{t}\right)^{\frac{2}{3}} t \quad \begin{cases} a_{1} = 2.33\\ a_{2} = 4.09\\ a_{3} = 5.52 \end{cases}$$

Confinement of holon-spinon pair