Monte Carlo simulations of quantum systems with global updates

Alejandro Muramatsu Institut für Theoretische Physik III Universität Stuttgart

Quantum spin-systems II

Loop-algorithm and further developements

H.G. Evertz, Adv. Phys. 52, 1 (2003)

H.G. Evertz, Adv. Phys. **52**, 1 (2003)

Weight of a configuration $\boldsymbol{s} = (s_1, \ldots, s_{2L})$

W(s) (1)

H.G. Evertz, Adv. Phys. **52**, 1 (2003)

Weight of a configuration
$$s = (s_1, \dots, s_{2L})$$

$$W(s) = \sum_{\mathcal{G}} V(\mathcal{G}) \Delta(s, \mathcal{G})$$
(1)

 $V(\mathcal{G}) \longrightarrow$ weight of graph \mathcal{G} .

$$\Delta(\boldsymbol{s}, \mathcal{G}) = \begin{cases} 1 & \text{if graph } \mathcal{G} \text{ compatible with } \boldsymbol{s} \\ 0 & \text{otherwise }. \end{cases}$$

H.G. Evertz, Adv. Phys. **52**, 1 (2003)

Weight of a configuration
$$s = (s_1, \dots, s_{2L})$$

$$W(s) = \sum_{\mathcal{G}} V(\mathcal{G}) \Delta(s, \mathcal{G})$$
(1)

 $V(\mathcal{G}) \longrightarrow$ weight of graph \mathcal{G} .

$$\Delta(\boldsymbol{s}, \mathcal{G}) = \begin{cases} 1 & \text{if graph } \mathcal{G} \text{ compatible with } \boldsymbol{s} \\ 0 & \text{otherwise }. \end{cases}$$

Assume (1) is also fulfilled at each plaquette.

$$\hookrightarrow w(u) = \sum_{g} v(g) \Delta(u,g) \;,$$

H.G. Evertz, Adv. Phys. 52, 1 (2003)

Weight of a configuration
$$s = (s_1, \dots, s_{2L})$$

$$W(s) = \sum_{\mathcal{G}} V(\mathcal{G}) \Delta(s, \mathcal{G})$$
(1)

 $V(\mathcal{G}) \longrightarrow$ weight of graph \mathcal{G} .

$$\Delta(\boldsymbol{s}, \mathcal{G}) = \begin{cases} 1 & \text{if graph } \mathcal{G} \text{ compatible with } \boldsymbol{s} \\ 0 & \text{otherwise }. \end{cases}$$

Assume (1) is also fulfilled at each plaquette.

$$\hookrightarrow w(u) = \sum_{g} v(g) \Delta(u,g) ,$$

Probability of a graph given a configuration on a plaquette

$$p(g \mid u) = \frac{v(g)\Delta(u,g)}{w(u)},$$

Consider all possible configurations of shaded plaquettes

Consider all possible configurations of shaded plaquettes

to go from one configuration to another, an even number of sites should change their states

Consider all possible configurations of shaded plaquettes

to go from one configuration to another, an even number of sites should change their states

Possible graphs

$$w(u) = \sum_{g} v(g) \Delta(u,g)$$

$$w(u) = \sum_{g} v(g)\Delta(u,g)$$
$$\downarrow$$
$$e^{-\Delta\tau J\Delta/4}$$
$$= v(\parallel) + v(\times) + v_1(\otimes)$$

$$\sinh(\Delta \tau J/2) e^{\Delta \tau J \Delta/4}$$
$$= v(=) + v(\times) + v_2(\otimes)$$

$$\cosh(\Delta \tau J/2) e^{\Delta \tau J \Delta/4}$$
$$= v(\parallel) + v(=) + v_3(\otimes)$$

Set $v_i(\otimes) = 0$

Set
$$v_i(\otimes) = 0$$

 $\hookrightarrow v(\times) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 - \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(\parallel) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 + \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(=) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{\exp\left[\Delta \tau \left(\frac{J}{2} + \frac{J \Delta}{2}\right)\right] - 1\right\}.$

Set
$$v_i(\otimes) = 0$$

 $\hookrightarrow v(\times) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 - \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(\parallel) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 + \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(=) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{\exp\left[\Delta \tau \left(\frac{J}{2} + \frac{J \Delta}{2}\right)\right] - 1\right\}.$

For the isotropic Heisenberg model $v(\times) = 0$.

Set
$$v_i(\otimes) = 0$$

 $\hookrightarrow v(\times) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 - \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(\parallel) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 + \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(=) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{\exp\left[\Delta \tau \left(\frac{J}{2} + \frac{J \Delta}{2}\right)\right] - 1\right\}.$

For the isotropic Heisenberg model $v(\times) = 0$.

 \hookrightarrow need only two graphs

Configurations are changed by flipping all the states along the loop.

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(\boldsymbol{s}, \mathcal{G}) = V(\mathcal{G})\Delta(\boldsymbol{s}, \mathcal{G}) ,$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s, \mathcal{G}) = V(\mathcal{G})\Delta(s, \mathcal{G}) , \implies W(s, \mathcal{G}) = W(s', \mathcal{G})$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

 \hookrightarrow Detailed balance is fulfilled by W(s).

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

 \hookrightarrow Detailed balance is fulfilled by W(s).

Transition probability (heat-bath)

$$p(\boldsymbol{s} \rightarrow \boldsymbol{s}', \mathcal{G}) = rac{W(\boldsymbol{s}', \mathcal{G})}{W(\boldsymbol{s}, \mathcal{G}) + W(\boldsymbol{s}', \mathcal{G})},$$
Update

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

 \hookrightarrow Detailed balance is fulfilled by W(s).

Transition probability (heat-bath)

$$p(\mathbf{s} \to \mathbf{s}', \mathcal{G}) = \frac{W(\mathbf{s}', \mathcal{G})}{W(\mathbf{s}, \mathcal{G}) + W(\mathbf{s}', \mathcal{G})}, \implies p(\mathbf{s} \to \mathbf{s}', \mathcal{G}) = \frac{1}{2}$$

All S_T^z states accessible

Simulation in grand canonical ensemble

→ Simulation in grand canonical ensemble

→ Simulation in grand canonical ensemble

→ Simulation in grand canonical ensemble

← Simulation in grand canonical ensemble

Change of winding numbers are possible

Change of winding numbers are possible

 \hookrightarrow Simulations are ergodic

 $\hookrightarrow \textbf{Simulations are ergodic}$

World lines

Active loops

 $\hookrightarrow \textbf{Simulations are ergodic}$

World lines

Active loops

 $\hookrightarrow \textbf{Simulations are ergodic}$

World lines

Active loops

Estimator for the expectation value

$$<\mathcal{O}>~=~rac{\sum_{m{s}}W\left(m{s}
ight)~\mathcal{O}\left(m{s}
ight)}{\sum_{m{s}}W\left(m{s}
ight)}$$

Estimator for the expectation value

$$<\mathcal{O}> = \frac{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right) \ \mathcal{O}\left(\boldsymbol{s}\right)}{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right)}$$

Recall

$$W(\boldsymbol{s}) = \sum_{\boldsymbol{\mathcal{G}}} V(\boldsymbol{\mathcal{G}}) \ \Delta(\boldsymbol{s}, \boldsymbol{\mathcal{G}})$$

Estimator for the expectation value

$$<\mathcal{O}> = \frac{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right) \ \mathcal{O}\left(\boldsymbol{s}\right)}{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right)}$$

Recall

$$W(\boldsymbol{s}) = \sum_{\boldsymbol{\mathcal{G}}} V(\boldsymbol{\mathcal{G}}) \ \Delta(\boldsymbol{s}, \boldsymbol{\mathcal{G}})$$

Then, we can define

$$\mathcal{O}\left(\mathcal{G}
ight) \;\;=\;\; \sum_{oldsymbol{s}\in\mathcal{G}}\mathcal{O}\left(oldsymbol{s}
ight)$$

Estimator for the expectation value

$$<\mathcal{O}> = \frac{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right) \, \mathcal{O}\left(\boldsymbol{s}\right)}{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right)}$$

Recall

$$W(\boldsymbol{s}) = \sum_{\boldsymbol{\mathcal{G}}} V(\boldsymbol{\mathcal{G}}) \ \Delta(\boldsymbol{s}, \boldsymbol{\mathcal{G}})$$

Then, we can define

$$\mathcal{O}\left(\mathcal{G}
ight) \;\; = \;\; \sum_{oldsymbol{s}\in\mathcal{G}}\mathcal{O}\left(oldsymbol{s}
ight)$$

such that

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$P(\mathcal{G}) = \frac{V(\mathcal{G})}{\sum_{\mathcal{G}} V(\mathcal{G}) \sum_{\boldsymbol{s} \in \mathcal{G}} \Delta(\boldsymbol{s}, \mathcal{G})}$$

Estimator for the expectation value

$$<\mathcal{O}> = \frac{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right) \, \mathcal{O}\left(\boldsymbol{s}\right)}{\sum_{\boldsymbol{s}} W\left(\boldsymbol{s}\right)}$$

Recall

$$W(\boldsymbol{s}) = \sum_{\boldsymbol{\mathcal{G}}} V(\boldsymbol{\mathcal{G}}) \ \Delta(\boldsymbol{s}, \boldsymbol{\mathcal{G}})$$

Then, we can define

$$\mathcal{O}\left(\mathcal{G}
ight) \;\; = \;\; \sum_{oldsymbol{s}\in\mathcal{G}}\mathcal{O}\left(oldsymbol{s}
ight)$$

such that

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$P(\mathcal{G}) = \frac{V(\mathcal{G})}{\sum_{\mathcal{G}} V(\mathcal{G}) \sum_{\boldsymbol{s} \in \mathcal{G}} \Delta(\boldsymbol{s}, \mathcal{G})}$$

 $< \mathcal{O} >$ is an expectation value in the ensemble of graphs.

$$4S_i^z S_j^z \left(\mathcal{G} = \text{loop} \right) = \begin{cases} \sigma_i \sigma_j & \text{in the same cluster} \\ 0 & \text{otherwise} \end{cases}$$

where $\sigma_i = \pm 1$.

$$4S_i^z S_j^z \left(\mathcal{G} = \text{loop} \right) = \begin{cases} \sigma_i \sigma_j & \text{in the same cluster} \\ 0 & \text{otherwise} \end{cases}$$

where $\sigma_i = \pm 1$.

Only pairs i and j in the same loop contribute.

$$4S_i^z S_j^z \left(\mathcal{G} = \text{loop} \right) = \begin{cases} \sigma_i \sigma_j & \text{in the same cluster} \\ 0 & \text{otherwise} \end{cases}$$

where $\sigma_i = \pm 1$.

Only pairs i and j in the same loop contribute.

Recall

$$4S_i^z S_j^z \left(\mathcal{G} = \text{loop} \right) = \begin{cases} \sigma_i \sigma_j & \text{in the same cluster} \\ 0 & \text{otherwise} \end{cases}$$

where $\sigma_i = \pm 1$.

Only pairs i and j in the same loop contribute.

Recall

vertical lines join sites with equal spins

horizontal lines join sites with alternating spins

$$\hookrightarrow (-1)^{|x_i - x_j|} 4S_i^z S_j^z$$

$$\hookrightarrow (-1)^{|x_i - x_j|} 4S_i^z S_j^z = (-1)^{|x_i - x_j|} \sigma_i \sigma_j = 1$$

$$\hookrightarrow (-1)^{|x_i - x_j|} 4S_i^z S_j^z = (-1)^{|x_i - x_j|} \sigma_i \sigma_j = 1$$

 $<(-1)^{|x_i-x_j|} 4S_i^z S_j^z >$ is a summation of positive definite contributions

$$\hookrightarrow (-1)^{|x_i - x_j|} 4S_i^z S_j^z = (-1)^{|x_i - x_j|} \sigma_i \sigma_j = 1$$

 $<(-1)^{|x_i-x_j|} 4S_i^z S_j^z >$ is a summation of positive definite contributions

Improved estimators reduce fluctuations

2.3 Off-diagonal operators

R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)
R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)

Recall

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$egin{array}{rcl} \mathcal{O}\left(\mathcal{G}
ight) &=& \displaystyle{\sum_{oldsymbol{s}\in\mathcal{G}}\mathcal{O}\left(oldsymbol{s}
ight)} \end{array}$$

R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)

Recall

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$\mathcal{O}\left(\mathcal{G}
ight) \ = \ \sum_{oldsymbol{s}\in\mathcal{G}}\mathcal{O}\left(oldsymbol{s}
ight) = \sum_{oldsymbol{s}}\mathcal{O}\Delta\left(oldsymbol{s},\mathcal{G}
ight)$$

R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)

Recall

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$\mathcal{O}\left(\mathcal{G}\right) \hspace{2mm} = \hspace{2mm} \sum_{\boldsymbol{s} \in \mathcal{G}} \mathcal{O}\left(\boldsymbol{s}\right) \hspace{-1mm} = \hspace{-1mm} \sum_{\boldsymbol{s}} \mathcal{O} \Delta\left(\boldsymbol{s}, \mathcal{G}\right)$$

 $\hookrightarrow \mathcal{O}\left(\mathcal{G}\right) \text{ is basis independent}$

R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)

Recall

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$\mathcal{O}\left(\mathcal{G}\right) \hspace{2mm} = \hspace{2mm} \sum_{\boldsymbol{s} \in \mathcal{G}} \mathcal{O}\left(\boldsymbol{s}\right) \hspace{-1mm} = \hspace{-1mm} \sum_{\boldsymbol{s}} \mathcal{O} \Delta\left(\boldsymbol{s}, \mathcal{G}\right)$$

 $\hookrightarrow \mathcal{O}\left(\mathcal{G}\right) \text{ is basis independent}$

 \hookrightarrow Change to a basis where ${\mathcal O}$ is diagonal

R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)

Recall

$$\langle \mathcal{O} \rangle = \sum_{\mathcal{G}} P(\mathcal{G}) \mathcal{O}(\mathcal{G})$$

with

$$\mathcal{O}\left(\mathcal{G}
ight) \ = \ \sum_{oldsymbol{s}\in\mathcal{G}}\mathcal{O}\left(oldsymbol{s}
ight) = \sum_{oldsymbol{s}}\mathcal{O}\Delta\left(oldsymbol{s},\mathcal{G}
ight)$$

 $\hookrightarrow \mathcal{O}\left(\mathcal{G}\right) \text{ is basis independent}$

 \hookrightarrow Change to a basis where ${\mathcal O}$ is diagonal

As in the case of diagonal operators,

$$4S_i^x S_j^x \left(\mathcal{G} = \text{loop} \right) = \begin{cases} \sigma_i \sigma_j & \text{in the same cluster} \\ 0 & \text{otherwise} \end{cases}$$

B.B. Beard and U.J. Wiese, Phys. Rev. Lett. 77, 5130 (1996)

B.B. Beard and U.J. Wiese, Phys. Rev. Lett. 77, 5130 (1996)

Discrete imaginary time \longrightarrow **systematic error** $\mathcal{O}\left(\Delta\tau^2\right)$

B.B. Beard and U.J. Wiese, Phys. Rev. Lett. 77, 5130 (1996)

Discrete imaginary time \longrightarrow systematic error $\mathcal{O}\left(\Delta \tau^2\right)$

Take the limit $\Delta \tau \rightarrow 0$

B.B. Beard and U.J. Wiese, Phys. Rev. Lett. 77, 5130 (1996)

Discrete imaginary time \longrightarrow systematic error $\mathcal{O}(\Delta \tau^2)$

Take the limit $\Delta \tau \rightarrow 0$

 $p(\|) = 1$

Continuum limit \longrightarrow probability density per unit time

$$\frac{p(=)}{\Delta \tau} \longrightarrow \frac{J}{2}$$

Start at some point of the lattice

Start at some point of the lattice

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Start at some point of the lattice

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Put an horizontal line with probability density $\rho(=)=J/2$

Reverse direction

Repeat until loop closes

Flip the loop

• Infinite lattices and zero temperature

H.G. Evertz and W. von der Linden, Phys. Rev. Lett. 86, 5164 (2001)

• Infinite lattices and zero temperature

H.G. Evertz and W. von der Linden, Phys. Rev. Lett. 86, 5164 (2001)

• Hubbard model

N. Kawashima, J.E. Gubernatis, and H.G. Evertz, Phys. Rev. B 50, 136 (1994)

Infinite lattices and zero temperature

H.G. Evertz and W. von der Linden, Phys. Rev. Lett. 86, 5164 (2001)

• Hubbard model

N. Kawashima, J.E. Gubernatis, and H.G. Evertz, Phys. Rev. B 50, 136 (1994)

• t-J model

B. Ammon, H.G. Evertz, N. Kawashima, M. Troyer, and B. Frischmuth,
Phys. Rev. B 58, 4304 (1998)
M. Brunner and A. Muramatsu, Phys. Rev. B 58, R10100 (1998)

Infinite lattices and zero temperature

H.G. Evertz and W. von der Linden, Phys. Rev. Lett. 86, 5164 (2001)

• Hubbard model

N. Kawashima, J.E. Gubernatis, and H.G. Evertz, Phys. Rev. B 50, 136 (1994)

• t-J model

B. Ammon, H.G. Evertz, N. Kawashima, M. Troyer, and B. Frischmuth,
Phys. Rev. B 58, 4304 (1998)
M. Brunner and A. Muramatsu, Phys. Rev. B 58, R10100 (1998)

Solution of the minus sign problem with merons

S. Chandrasekharan and U.J. Wiese, Phys. Rev. Lett. 83, 3116 (1999)

• Infinite lattices and zero temperature

H.G. Evertz and W. von der Linden, Phys. Rev. Lett. 86, 5164 (2001)

Hubbard model

N. Kawashima, J.E. Gubernatis, and H.G. Evertz, Phys. Rev. B 50, 136 (1994)

• t-J model

B. Ammon, H.G. Evertz, N. Kawashima, M. Troyer, and B. Frischmuth,
Phys. Rev. B 58, 4304 (1998)
M. Brunner and A. Muramatsu, Phys. Rev. B 58, R10100 (1998)

Solution of the minus sign problem with merons

S. Chandrasekharan and U.J. Wiese, Phys. Rev. Lett. 83, 3116 (1999)

Stochastic series expansion

O.F. Syljuasen and A.W. Sandvik, Phys. Rev. E 66, 046701 (2002)

Loop-algorithm for the t-J model Two dimensional t-model (J=0) with one hole

Nagaoka's ferromagnetism

M. Brunner and A. Muramatsu, Phys. Rev. B 58, R10100 (1998)