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Quantum spin-systems ||

Loop-algorithm and further developements
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Weight of a configuration s = (s1,...,521)

W(s)=>» V() A(s,G)
g

V (G) — weight of graph G.

1 if graph G compatible with s
0 otherwise .

A(s,G) = {
Assume (1) is also fulfilled at each plaquette.

— w(u) =) v(g)Au,g) ,

g

Probability of a graph given a configuration on a plaquette

v(g)A(u, g)

w(u

p(g | u) =

Y
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Consider all possible configurations of shaded plaquettes

to go from one configuration
to another, an even number
of sites should change their
states

Possible graphs

v (1) v (=) v (X) v (®)



Compatibility table — A(u, g)



Compatibility table — A(u, g)

X

N
N




Compatibility table — A(u, g)

w(u) =Y v(g9)A(u, g)

X

N

\




Compatibility table — A(u, g)

N\ IN[p2

e—ATJA/él

=v(]]) + v(x) +v1(®)

sinh(AT.J/2) eA7/A/4
=v(=) +v(X) + v2(®)

cosh(AT.J/2) eAT/A/
= () +v(=) + v3(®)



Solution



Solution

Set v; (@) =0



Solution
Set v; (@) =0

— v(X)

J JA
5_7>
J JA
5_7)




Solution

Set v; (@) =0

—v(x) =

For the isotropic Heisenberg model v(x) = 0.




Solution

Set v; (®) =0
1 ATJA
—v(x) = 5eXP ( —— 1 —exp
1 ATJA
v(]]) = §exp<— i ){1+exp

For the isotropic Heisenberg model v(x) = 0.

— need only two graphs
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Configurations are changed by flipping all the states along the loop.
— both configurations belong to the same graph.

Since
W(s,G)=V(G)A(s,G), — W(s,G)=W(s, G)

Detailed balance

W(s,G) p(s — s,G) =W(s',G) p(s’ — s,G) .

— Detailed balance is fulfilled by W (s).

Transition probability (heat-bath)

/ _ W(s',9) I, _}
p(8_>87g)_W(S,g)—|—W(S’,g), —  p(s s,g)—2
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Change of winding numbers are
possible

— Simulations are ergodic

World lines _

Active loops

Short autocorrelation times.
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2.2 Improved estimators with the loop-algorithm

Estimator for the expectation value

>.sWi(s) O(s)
<0 S5 W ()
Recall
W(s)=> VI(G) A(s,G)
Then, we can define ’
O(G) = ) 0O(s)
Seg
such that
<O0> = > P(G) O(G)
g
with
V(9)

PO = S V0 Y eeo A (5.0)

< O > is an expectation value in the ensemble of graphs.
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Consider O = 45757, where i and j are points in space-time.

where o; = £1.

Only pairs ¢ and j in the same loop contribute.

Recall

45757 (G =loop) = {

b

in the same cluster
otherwise

vertical lines join sites with
equal spins

horizontal lines join sites with
alternating spins



For staggered susceptibility

— (=1)lrieil 49757



For staggered susceptibility

— (=1)limilggzsr = (—1)lFi il g, =1



For staggered susceptibility

— (=1)limilggzsr = (—1)lFi il g, =1

< (=1)lzi==;l 4575% > is a summation of positive definite contributions



For staggered susceptibility

— (=1)limilggzsr = (—1)lFi il g, =1

< (=1)lzi==;l 4575% > is a summation of positive definite contributions

Improved estimators reduce fluctuations
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2.3 Off-diagonal operators

R. Brower, S. Chandrasekharan, and U.J. Wiese, Physica A 261, 520 (1998)

Recall

with

OG) = ) 0O(s)=) 0OA(s,G)

Scg S

— (O (G) is basis independent
— Change to a basis where O is diagonal

As in the case of diagonal operators,

0;0; 1n the same cluster
0  otherwise

45757 (G = loop) = {
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B.B. Beard and U.J. Wiese, Phys. Rev. Lett. 77, 5130 (1996)
Discrete imaginary time — systematic error O (AT2)

Take the limit A7 — 0
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Loop-algorithm for the t-J model
Two dimensional t-model (J=0) with one hole

Nagaoka’s ferromagnetism
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M. Brunner and A. Muramatsu, Phys. Rev. B 58, R10100 (1998)



