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Quantum spin-systems |

World-lines and the loop-algorithm
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1.1 Quantum spin-chain

Let us consider an antiferromagnetic spin S-1/2 chain
(Heisenberg model).

where A = J,/J — A =1 isotropic Heisenberg antiferromagnet.

Jordan-Wigner transformation — spinless fermions with nearest neighbor
interactions.

Mapping of states: |T> — | 1 >, =

Transverse interaction — nearest neighbor hopping

Longitudinal interaction — nearest neighbor interaction

— —tz (czciﬂ + h.c) + VZ ('n,Z — %) <ni+1 — %)

with t = J/2 and V = JA — isotropic HAF — V = 2¢.
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Possible phases?
Without magnetic field S* = 0 «—— half-filling n = 0.5

1) A1
XY model with quasi long-range AF order +—— metal

i) A>1
Ising model with long-range AF order «—— insulator (CDW)

i11) Ag ?
A =1 — Heisenberg model — critical point?

Actually there are exact solutions but not about e.g. spectral functions.

Numerical methods
Exact diagonalization — # of states ~ 2% — N ~ 30

— quantum Monte Carlo simulations
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1.2 The world-line algorithm

J.E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler,
Phys. Rev. B 26, 5033 (1982).

Consider a 1-D system with nearest neighbor terms
H = ZHi,H—l

Partition function

L
7 = Tre PH =Ty H e~ ATH
=1

= > <irle iy ><igle ™ Hip_y > - <igle ™A iy >,
{ic}

where AT = /L, and {|i; >} complete sets of states at each time slice.
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Trotter-Suzuki decomposition — H = H; + H,.

o~ ATH _ —ATH1,—ATHy | () [(AT)ﬂ

Choose

Hy 2y = Z Hi i1,
1 odd (even)

— Hy and Hs consist each of a sum of mutually commuting pieces.

— the matrix elements are reduced to a product of two-site matrix
elements:

—A

<ip|e ™ | dpq >

= <idgp | e STHL gy ><ige | e 22 gy 9 > +O [(AT)ﬂ
— H < gy | e ATHLH gy 1 >
1 odd

« TT < e |51 iy > +0 [(ArY

7 even
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World-lines in a checkerboard in space-time (imaginary time)

Matrix elements

<TT e_ATH'L,’L—l—l NN

<1l o ATH; i1

<Tl e_ATHi,?H—l N

A 2AT

AT

|maginary time

|
Space
> = <[] |[l>=eAT/A/M
TI> = <{T|-[IT>= eTATIA/ osh ATJ /2
> = <[] [T]>= -T2 45inh ATJ/2 .
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Hamiltonian

Hy — Z[—

Matrix elements

<l e AT it || 1>

S¥ = (=1)'SF
S = (~1)'s

(

z z
S — 57,

(787 +878] ) + JASFSHL

Ti>=

etATIA A ginh ATJ/2 .



Canonical transformation (only on bipartite lattices)

S¥ = (=1)'SF

S,;y — (—1)iS§J

7

Hamiltonian

Hyg — > [=J(S7SF,+SYSY,) + JASFSE ] |

Matrix elements

<tlle 21| |1> = <[] --- |TI>=e"?"/2/sinh ATJ/2 .

Minus-sign problem on frustrated lattices
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Local moves

Update
WHGW sSu 5v
R = = [tanh A7.J/2]"" |cosh ATJ/QeAT‘]A/ﬂ
Wold
with
s = n(,,j)+n(,j+1)—n(+1,7) —n(i+1,7+1),
u = 1—n(t+1,5—-1)—n(E+1,7+2),
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Simulation
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Simulation

—— initial configuration

— final configuration

Local moves are inefficient
for an ergodic sampling
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Winding numbers

Identical particles

Allow for all possible
permutations

Winding numbers # 0

Local moves are not ergodic
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Measurements

Observables diagonal in occupation numbers

1
<O>= lim —oard Y > 0nf())

—

N — # of sites, 2. — # of time slices, M/ —— # of samples

Energy
1
< H > — ZTI' (Hl _|_H2) [e—ATHle—ATHQ}L
B . . <y | Ore=27HL | 4y >
— Z P(Zl,--o,ZQL){ <?:1|e_ATH1|’i2>
{i1-iar }
< 197, | e_ATHQOQ | 11 >
< 197, ’ e~ ATH> ’ 11 > ’
where
1
P(i1,...,io1) = = < iy | e 2TH | iy > oo <igp [ e727H2 |4 >

A
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Examples: one-particle Green’s function

Gij =< ¢;i(1)ch(0) >, «— < SFs; >

Consider 7 = 0.

L
Gy — Tr{c}ci o= ArH1= ATH] }

. <21|cce
Z 21,...,22L)

<y | e ATHL | 45 >
{21--+i2L} 1’ ’22

ATH,q | ,L°2 >

NIH N[~



Observables that do not conserve # of particles locally

Examples: one-particle Green’s function

Gij =< ¢;i(1)ch(0) >, «— < SFs; >

Consider 7 = 0.

1
Gi; = ETT{C}L'G@ [e_ATHle_ATHQ}L}

< i | c;-cz-e_ATHl | ig >

1
= — P(i1,...,1
7 Z (217 77'2L) < ?:1 | e_ATHl | Z-2 >

{i1--+i2r}

Badly defined for | i —j |> 1,



Observables that do not conserve # of particles locally

Examples: one-particle Green’s function

G =< Ci(T)C;-(O) >, — < S,;"S; >

Consider 7 = 0.

Gij = %Tr {c;r-ci [e_ATHle_ATHﬂL}
_ Z Py, <21|cce ATHL |4, >
) <y | e ATHL | 4y >
Badly defined for \ i —J > 1,
Insert additional states
>, <1 | c;r-cz- |y >< iy | e 2TH gy >0 <<y | cj-cz- i’ >>5

Gij = . . =

Yoo<idp |y >< iy | emATHL |4y > - <<y | i >>5

where the new probability distribution is given by

<1’y ‘ e~ ATH: ‘ 19 > - <19, ‘ e~ ATH2 ‘ 11 >

P .
Z<i/1|e_ATH1|i2>"'<i2L|e_ATH2|i1>
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Pro’s and con’s for the world-line algorithm

o Easy to implement with H =} _. . H;;.

J>
e Restricted to a given winding number sector. — non ergodic.
e Restricted to fixed S5 — no ferromagnetism.

e Not efficient for off-diagonal correlation functions.

e Long autocorrelation times
N. Kawashima, J. E. Gubernatis, and H. G. Evertz, Phys. Rev. B 50, 136 (1994).
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1.3 The loop-algorithm

H.G. Evertz, Adv. Phys. 52, 1 (2003)

Weight of a configuration s = (s1,...,521)

W(s)=>» V() A(s.G)
g

V (G) — weight of graph G.

1 if graph G compatible with s
0 otherwise .

A(s,G) = {
Assume (2) is also fulfilled at each plaquette.

— w(u) =) v(g)Au,g) ,

g

Probability of a graph given a configuration on a plaquette

v(g)A(u, g)

w(u

p(g | u) =

Y
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Graphs

Consider all possible configurations of shaded plaquettes

to go from one configuration
to another, an even number
of sites should change their
states

Possible graphs

v (1) v (=) v (X) v (®)
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w(u) =Y v(g9)A(u, g)

X

N

\




Compatibility table — A(u, g)

N\ IN[p2

e—ATJA/él

=v(]]) + v(x) +v1(®)

sinh(AT.J/2) eA7/A/4
=v(=) +v(X) + v2(®)

cosh(AT.J/2) eAT/A/
= () +v(=) + v3(®)
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Solution
Set v; (@) =0

— v(X)

J JA
5_7>
J JA
5_7)




Solution

Set v; (@) =0

—v(x) =

For the isotropic Heisenberg model v(x) = 0.




Solution

Set v; (®) =0
1 ATJA
—v(x) = 5eXP ( —— 1 —exp
1 ATJA
v(]]) = §exp<— i ){1+exp

For the isotropic Heisenberg model v(x) = 0.

— need only two graphs
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Update
Configurations are changed by flipping all the states along the loop.
— both configurations belong to the same graph.

Since
W(s,G)=V(G)A(s,G), — W(s,G)=W(s, G)

Detailed balance

W(s,G) p(s — s,G) =W(s',G) p(s’ — s,G) .

— Detailed balance is fulfilled by W (s).

Transition probability (heat-bath)

/ _ W(s',9) I, _}
p(8_>87g)_W(S,g)—|—W(S’,g), —  p(s s,g)—2
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Isotropic Heisenberg model

Active loops

Flipped loops —_—




All 5% states accessible



All 5% states accessible

— Simulation in grand canonical
ensemble



All 5% states accessible

— Simulation in grand canonical
ensemble

Loops I

Active loops

World lines _
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— Simulation in grand canonical
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Active loops

World lines _
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Change of winding numbers are
possible

— Simulations are ergodic

World lines _

Active loops

Short autocorrelation times.




