Monte Carlo simulations of quantum systems with global updates

Alejandro Muramatsu Institut für Theoretische Physik III Universität Stuttgart

Quantum spin-systems I

World-lines and the loop-algorithm

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

$$H_H = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right) , \qquad (1)$$

where $\Delta = J_z/J \longrightarrow \Delta = 1$ isotropic Heisenberg antiferromagnet.

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

$$H_H = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right) , \qquad (1)$$

where $\Delta = J_z/J \longrightarrow \Delta = 1$ isotropic Heisenberg antiferromagnet.

Jordan-Wigner transformation \longrightarrow spinless fermions with nearest neighbor interactions.

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

$$H_H = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right) , \qquad (1)$$

where $\Delta = J_z/J \longrightarrow \Delta = 1$ isotropic Heisenberg antiferromagnet.

Jordan-Wigner transformation \longrightarrow spinless fermions with nearest neighbor interactions.

Mapping of states: $|\uparrow > \longrightarrow |1 >$, $|\downarrow > \longrightarrow |0 >$

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

$$H_H = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right) , \qquad (1)$$

where $\Delta = J_z/J \longrightarrow \Delta = 1$ isotropic Heisenberg antiferromagnet.

Jordan-Wigner transformation \longrightarrow spinless fermions with nearest neighbor interactions.

Mapping of states: $|\uparrow > \longrightarrow |1 >$, $|\downarrow > \longrightarrow |0 >$

Transverse interaction \longrightarrow **nearest neighbor hopping**

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

$$H_H = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right) , \qquad (1)$$

where $\Delta = J_z/J \longrightarrow \Delta = 1$ isotropic Heisenberg antiferromagnet.

Jordan-Wigner transformation \longrightarrow spinless fermions with nearest neighbor interactions.

Mapping of states: $|\uparrow > \longrightarrow |1 >$, $|\downarrow > \longrightarrow |0 >$

Transverse interaction \longrightarrow **nearest neighbor hopping**

Longitudinal interaction \longrightarrow nearest neighbor interaction

Let us consider an antiferromagnetic spin S-1/2 chain (Heisenberg model).

$$H_H = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right) , \qquad (1)$$

where $\Delta = J_z/J \longrightarrow \Delta = 1$ isotropic Heisenberg antiferromagnet.

Jordan-Wigner transformation \longrightarrow spinless fermions with nearest neighbor interactions.

Mapping of states: $|\uparrow > \longrightarrow |1 >$, $|\downarrow > \longrightarrow |0 >$

Transverse interaction \longrightarrow **nearest neighbor hopping**

Longitudinal interaction \longrightarrow nearest neighbor interaction

$$(1) \longrightarrow -t \sum_{i} \left(c_i^{\dagger} c_{i+1} + h.c \right) + V \sum_{i} \left(n_i - \frac{1}{2} \right) \left(n_{i+1} - \frac{1}{2} \right)$$

with t = J/2 and $V = J\Delta \implies$ isotropic HAF $\longrightarrow V = 2t$.

Without magnetic field $S^z = 0 \longleftrightarrow$ half-filling n = 0.5

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

ii) $\Delta \gg 1$ Ising model with long-range AF order \longleftrightarrow insulator (CDW)

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

- *ii*) $\Delta \gg 1$ Ising model with long-range AF order \longleftrightarrow insulator (CDW)
- *iii*) Δ_c ? $\Delta = 1 \longrightarrow$ Heisenberg model \longrightarrow critical point?

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

- *ii*) $\Delta \gg 1$ Ising model with long-range AF order \longleftrightarrow insulator (CDW)
- *iii*) Δ_c ? $\Delta = 1 \longrightarrow$ Heisenberg model \longrightarrow critical point?

Actually there are exact solutions but not about e.g. spectral functions.

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

ii) $\Delta \gg 1$ Ising model with long-range AF order \longleftrightarrow insulator (CDW)

iii) Δ_c ? $\Delta = 1 \longrightarrow$ Heisenberg model \longrightarrow critical point?

Actually there are exact solutions but not about e.g. spectral functions. Numerical methods

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

ii) $\Delta \gg 1$ Ising model with long-range AF order \longleftrightarrow insulator (CDW)

iii) Δ_c ? $\Delta = 1 \longrightarrow$ Heisenberg model \longrightarrow critical point?

Actually there are exact solutions but not about e.g. spectral functions. Numerical methods

Exact diagonalization \longrightarrow **# of states** $\sim 2^N \longrightarrow N \sim 30$

Without magnetic field $S^z = 0 \leftrightarrow$ half-filling n = 0.5

i) $\Delta \ll 1$ XY model with quasi long-range AF order \longleftrightarrow metal

ii) $\Delta \gg 1$ Ising model with long-range AF order \longleftrightarrow insulator (CDW)

iii) Δ_c ? $\Delta = 1 \longrightarrow$ Heisenberg model \longrightarrow critical point?

Actually there are exact solutions but not about e.g. spectral functions. Numerical methods

Exact diagonalization \longrightarrow **# of states** $\sim 2^N \longrightarrow N \sim 30$

 $\hookrightarrow \textbf{quantum Monte Carlo simulations}$

1.2 The world-line algorithm

J.E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler, Phys. Rev. B 26, 5033 (1982).

1.2 The world-line algorithm

J.E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler, Phys. Rev. B **26**, 5033 (1982).

Consider a 1-D system with nearest neighbor terms

$$H = \sum_{i} H_{i,i+1}$$

1.2 The world-line algorithm

J.E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler, Phys. Rev. B 26, 5033 (1982).

Consider a 1-D system with nearest neighbor terms

$$H = \sum_{i} H_{i,i+1}$$

Partition function

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} \prod_{\ell=1}^{L} e^{-\Delta \tau H}$$
$$= \sum_{\{i_{\ell}\}} \langle i_{1} | e^{-\Delta \tau H} | i_{L} \rangle \langle i_{L} | e^{-\Delta \tau H} | i_{L-1} \rangle \cdots \langle i_{2} | e^{-\Delta \tau H} | i_{1} \rangle,$$

where $\Delta \tau = \beta/L$, and $\{|i_{\ell} >\}$ complete sets of states at each time slice.

Trotter-Suzuki decomposition \longrightarrow $H = H_1 + H_2$.

$$e^{-\Delta \tau H} = e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} + \mathcal{O}\left[(\Delta \tau)^2 \right] .$$

Trotter-Suzuki decomposition \longrightarrow $H = H_1 + H_2$.

$$e^{-\Delta \tau H} = e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} + \mathcal{O}\left[(\Delta \tau)^2 \right] .$$

Choose

$$H_{1(2)} = \sum_{i \text{ odd (even)}} H_{i,i+1},$$

 \hookrightarrow H_1 and H_2 consist each of a sum of mutually commuting pieces.

Trotter-Suzuki decomposition \longrightarrow $H = H_1 + H_2$.

$$e^{-\Delta \tau H} = e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} + \mathcal{O}\left[\left(\Delta \tau \right)^2 \right] .$$

Choose

$$H_{1(2)} = \sum_{i \text{ odd (even)}} H_{i,i+1},$$

 \hookrightarrow H_1 and H_2 consist each of a sum of mutually commuting pieces.

 \hookrightarrow the matrix elements are reduced to a product of two-site matrix elements:

$$< i_{\ell} | e^{-\Delta \tau H} | i_{\ell+1} >$$

$$= < i_{2\ell} | e^{-\Delta \tau H_1} | i_{2\ell-1} > < i_{2\ell-1} | e^{-\Delta \tau H_2} | i_{2\ell-2} > + \mathcal{O} \left[(\Delta \tau)^2 \right]$$

$$= \prod_{i \text{ odd}} < i_{2\ell} | e^{-\Delta \tau H_{i,i+1}} | i_{2\ell-1} >$$

$$\times \prod_{i \text{ even}} < i_{2\ell-1} | e^{-\Delta \tau H_{i,i+1}} | i_{2\ell-2} > + \mathcal{O} \left[(\Delta \tau)^2 \right] .$$

World-lines in a checkerboard in space-time (imaginary time)

World-lines in a checkerboard in space-time (imaginary time)

Matrix elements

$$\begin{array}{lll} <\uparrow\uparrow| \ \mathrm{e}^{-\Delta\tau H_{i,i+1}} |\uparrow\uparrow\rangle &=& <\downarrow\downarrow| \cdots |\downarrow\downarrow\rangle > = \mathrm{e}^{-\Delta\tau J\Delta/4} \\ <\uparrow\downarrow| \ \mathrm{e}^{-\Delta\tau H_{i,i+1}} |\uparrow\downarrow\rangle &=& <\downarrow\uparrow| \cdots |\downarrow\uparrow\rangle = \mathrm{e}^{+\Delta\tau J\Delta/4} \cosh \Delta\tau J/2 \\ <\uparrow\downarrow| \ \mathrm{e}^{-\Delta\tau H_{i,i+1}} |\downarrow\uparrow\rangle &=& <\downarrow\uparrow| \cdots |\uparrow\downarrow\rangle = -\mathrm{e}^{+\Delta\tau J\Delta/4} \sinh \Delta\tau J/2 \ . \end{array}$$

$$S_i^x \rightarrow (-1)^i S_i^x$$
$$S_i^y \rightarrow (-1)^i S_i^y$$
$$S_i^z \rightarrow S_i^z,$$

$$\begin{array}{rccc} S_i^x & \to & (-1)^i \, S_i^x \\ S_i^y & \to & (-1)^i \, S_i^y \\ S_i^z & \to & S_i^z \, , \end{array}$$

Hamiltonian

$$H_H \to \sum_i \left[-J \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y \right) + J \Delta S_i^z S_{i+1}^z \right] ,$$

$$\begin{array}{rccc} S_i^x & \to & (-1)^i \, S_i^x \\ S_i^y & \to & (-1)^i \, S_i^y \\ S_i^z & \to & S_i^z \, , \end{array}$$

Hamiltonian

$$H_H \to \sum_i \left[-J \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y \right) + J \Delta S_i^z S_{i+1}^z \right] ,$$

Matrix elements

$$\langle \uparrow \downarrow | e^{-\Delta \tau H_{i,i+1}} | \downarrow \uparrow \rangle = \langle \downarrow \uparrow | \cdots | \uparrow \downarrow \rangle = e^{+\Delta \tau J \Delta/4} \sinh \Delta \tau J/2$$
.

$$\begin{array}{rccc} S_i^x & \to & (-1)^i \, S_i^x \\ S_i^y & \to & (-1)^i \, S_i^y \\ S_i^z & \to & S_i^z \, , \end{array}$$

Hamiltonian

$$H_H \to \sum_{i} \left[-J \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y \right) + J \Delta S_i^z S_{i+1}^z \right] ,$$

Matrix elements

$$\langle \uparrow \downarrow | e^{-\Delta \tau H_{i,i+1}} | \downarrow \uparrow \rangle = \langle \downarrow \uparrow | \cdots | \uparrow \downarrow \rangle = e^{+\Delta \tau J \Delta/4} \sinh \Delta \tau J/2$$

Minus-sign problem on frustrated lattices

Local moves

Local moves

Update

$$R = \frac{W_{\text{new}}}{W_{\text{old}}} = \left[\tanh \Delta \tau J/2\right]^{su} \left[\cosh \Delta \tau J/2 e^{\Delta \tau J \Delta/2}\right]^{sv}$$

with

$$s \equiv n(i,j) + n(i,j+1) - n(i+1,j) - n(i+1,j+1) ,$$

$$u = 1 - n(i+1,j-1) - n(i+1,j+2) ,$$

$$v = n(i-1,j) - n(i+2,j) .$$

Simulation

Simulation

Simulation

final configuration

- initial configuration
 - final configuration

Local moves are inefficient for an ergodic sampling

Winding numbers

Winding numbers

Identical particles

Winding numbers

Identical particles

Allow for all possible permutations

Winding numbers

Identical particles

Allow for all possible permutations

Winding numbers $\neq 0$

Winding numbers

Identical particles

Allow for all possible permutations

Winding numbers $\neq 0$

Local moves are not ergodic

Measurements

Measurements

Observables diagonal in occupation numbers

$$\langle \mathcal{O} \rangle = \lim_{M \to \infty} \frac{1}{N \, 2L \, M} \sum_{k=1}^{M} \sum_{j=1}^{2L} \sum_{i=1}^{N} \mathcal{O}(n_i^k(j)) ,$$

 $N \longrightarrow \#$ of sites, $2L \longrightarrow \#$ of time slices, $M \longrightarrow \#$ of samples

Measurements

Observables diagonal in occupation numbers

$$\langle \mathcal{O} \rangle = \lim_{M \to \infty} \frac{1}{N \, 2L \, M} \sum_{k=1}^{M} \sum_{j=1}^{2L} \sum_{i=1}^{N} \mathcal{O}(n_i^k(j)) ,$$

 $N \longrightarrow \#$ of sites, $2L \longrightarrow \#$ of time slices, $M \longrightarrow \#$ of samples

Energy

$$< H > = \frac{1}{Z} \text{Tr} (H_1 + H_2) \left[e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} \right]^L$$

$$= \sum_{\{i_1 \cdots i_{2L}\}} P(i_1, \dots, i_{2L}) \left\{ \frac{< i_1 \mid \mathcal{O}_1 e^{-\Delta \tau H_1} \mid i_2 >}{< i_1 \mid e^{-\Delta \tau H_1} \mid i_2 >} \right.$$

$$+ \frac{< i_{2L} \mid e^{-\Delta \tau H_2} \mathcal{O}_2 \mid i_1 >}{< i_{2L} \mid e^{-\Delta \tau H_2} \mid i_1 >} \right\},$$

where

$$P(i_1, \dots, i_{2L}) \equiv \frac{1}{Z} < i_1 \mid e^{-\Delta \tau H_1} \mid i_2 > \dots < i_{2L} \mid e^{-\Delta \tau H_2} \mid i_1 >$$

Examples: one-particle Green's function

$$G_{ij} = \langle c_i(\tau) c_j^{\dagger}(0) \rangle, \quad \longleftrightarrow \quad \langle S_i^+ S_j^- \rangle$$

Examples: one-particle Green's function

$$G_{ij} = \langle c_i(\tau) c_j^{\dagger}(0) \rangle, \quad \longleftrightarrow \quad \langle S_i^+ S_j^- \rangle$$

Consider $\tau = 0$.

$$G_{ij} = \frac{1}{Z} \operatorname{Tr} \left\{ c_j^{\dagger} c_i \left[e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} \right]^L \right\}$$

= $\frac{1}{Z} \sum_{\{i_1 \cdots i_{2L}\}} P(i_1, \dots, i_{2L}) \frac{\langle i_1 \mid c_j^{\dagger} c_i e^{-\Delta \tau H_1} \mid i_2 \rangle}{\langle i_1 \mid e^{-\Delta \tau H_1} \mid i_2 \rangle}.$

Examples: one-particle Green's function

$$G_{ij} = \langle c_i(\tau) c_j^{\dagger}(0) \rangle, \quad \longleftrightarrow \quad \langle S_i^+ S_j^- \rangle$$

Consider $\tau = 0$.

$$G_{ij} = \frac{1}{Z} \operatorname{Tr} \left\{ c_j^{\dagger} c_i \left[e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} \right]^L \right\}$$

= $\frac{1}{Z} \sum_{\{i_1 \cdots i_{2L}\}} P(i_1, \dots, i_{2L}) \frac{\langle i_1 \mid c_j^{\dagger} c_i e^{-\Delta \tau H_1} \mid i_2 \rangle}{\langle i_1 \mid e^{-\Delta \tau H_1} \mid i_2 \rangle}.$

Badly defined for $\mid i - j \mid > 1$,

Examples: one-particle Green's function

$$G_{ij} = < c_i(\tau) c_j^{\dagger}(0) > , \quad \longleftrightarrow \quad < S_i^+ S_j^- >$$

Consider $\tau = 0$.

$$G_{ij} = \frac{1}{Z} \operatorname{Tr} \left\{ c_j^{\dagger} c_i \left[e^{-\Delta \tau H_1} e^{-\Delta \tau H_2} \right]^L \right\}$$

= $\frac{1}{Z} \sum_{\{i_1 \cdots i_{2L}\}} P(i_1, \dots, i_{2L}) \frac{\langle i_1 \mid c_j^{\dagger} c_i e^{-\Delta \tau H_1} \mid i_2 \rangle}{\langle i_1 \mid e^{-\Delta \tau H_1} \mid i_2 \rangle}$

Badly defined for |i - j| > 1,

Insert additional states

$$G_{ij} = \frac{\sum \langle i_1 | c_j^{\dagger} c_i | i'_1 \rangle \langle i'_1 | e^{-\Delta \tau H_1} | i_2 \rangle \cdots}{\sum \langle i_1 | i'_1 \rangle \langle i'_1 | e^{-\Delta \tau H_1} | i_2 \rangle \cdots} \equiv \frac{\langle \langle i_1 | c_j^{\dagger} c_i | i'_1 \rangle \rangle_{\tilde{P}}}{\langle \langle i_1 | i'_1 \rangle \rangle_{\tilde{P}}},$$

where the new probability distribution is given by

$$\tilde{P} \equiv \frac{\langle i'_1 \mid e^{-\Delta \tau H_1} \mid i_2 \rangle \cdots \langle i_{2L} \mid e^{-\Delta \tau H_2} \mid i_1 \rangle}{\sum \langle i'_1 \mid e^{-\Delta \tau H_1} \mid i_2 \rangle \cdots \langle i_{2L} \mid e^{-\Delta \tau H_2} \mid i_1 \rangle}$$

• Easy to implement with $H = \sum_{\langle i,j \rangle} H_{ij}$.

- Easy to implement with $H = \sum_{\langle i,j \rangle} H_{ij}$.
- Restricted to a given winding number sector. \rightarrow non ergodic.

- Easy to implement with $H = \sum_{\langle i,j \rangle} H_{ij}$.
- Restricted to a given winding number sector. \longrightarrow non ergodic.
- Restricted to fixed $S_T^z \longrightarrow$ no ferromagnetism.

- Easy to implement with $H = \sum_{\langle i,j \rangle} H_{ij}$.
- Restricted to a given winding number sector. \longrightarrow non ergodic.
- Restricted to fixed $S_T^z \longrightarrow$ no ferromagnetism.
- Not efficient for off-diagonal correlation functions.

- Easy to implement with $H = \sum_{\langle i,j \rangle} H_{ij}$.
- Restricted to a given winding number sector. \longrightarrow non ergodic.
- Restricted to fixed $S_T^z \longrightarrow$ no ferromagnetism.
- Not efficient for off-diagonal correlation functions.
- Long autocorrelation times

N. Kawashima, J. E. Gubernatis, and H. G. Evertz, Phys. Rev. B 50, 136 (1994).

H.G. Evertz, Adv. Phys. 52, 1 (2003)

H.G. Evertz, Adv. Phys. 52, 1 (2003)

Weight of a configuration $\boldsymbol{s} = (s_1, \ldots, s_{2L})$

W(s) (2)

H.G. Evertz, Adv. Phys. **52**, 1 (2003)

Weight of a configuration
$$\boldsymbol{s} = (s_1, \dots, s_{2L})$$

$$W(\boldsymbol{s}) = \sum_{\mathcal{G}} V(\mathcal{G}) \ \Delta(\boldsymbol{s}, \mathcal{G})$$
(2)

 $V(\mathcal{G}) \longrightarrow$ weight of graph \mathcal{G} .

$$\Delta(\boldsymbol{s}, \mathcal{G}) = \begin{cases} 1 & \text{if graph } \mathcal{G} \text{ compatible with } \boldsymbol{s} \\ 0 & \text{otherwise }. \end{cases}$$

H.G. Evertz, Adv. Phys. 52, 1 (2003)

Weight of a configuration
$$s = (s_1, \dots, s_{2L})$$

$$W(s) = \sum_{\mathcal{G}} V(\mathcal{G}) \Delta(s, \mathcal{G})$$
(2)

 $V(\mathcal{G}) \longrightarrow$ weight of graph \mathcal{G} .

$$\Delta(\boldsymbol{s}, \mathcal{G}) = \begin{cases} 1 & \text{if graph } \mathcal{G} \text{ compatible with } \boldsymbol{s} \\ 0 & \text{otherwise }. \end{cases}$$

Assume (2) is also fulfilled at each plaquette.

$$\hookrightarrow w(u) = \sum_{g} v(g) \Delta(u,g) ,$$

H.G. Evertz, Adv. Phys. 52, 1 (2003)

Weight of a configuration
$$s = (s_1, \dots, s_{2L})$$

$$W(s) = \sum_{\mathcal{G}} V(\mathcal{G}) \Delta(s, \mathcal{G})$$
(2)

 $V(\mathcal{G}) \longrightarrow$ weight of graph \mathcal{G} .

$$\Delta(\boldsymbol{s}, \mathcal{G}) = \begin{cases} 1 & \text{if graph } \mathcal{G} \text{ compatible with } \boldsymbol{s} \\ 0 & \text{otherwise }. \end{cases}$$

Assume (2) is also fulfilled at each plaquette.

$$\hookrightarrow w(u) = \sum_{g} v(g) \Delta(u,g) ,$$

Probability of a graph given a configuration on a plaquette

$$p(g \mid u) = \frac{v(g)\Delta(u,g)}{w(u)},$$

Consider all possible configurations of shaded plaquettes

Consider all possible configurations of shaded plaquettes

to go from one configuration to another, an even number of sites should change their states

Consider all possible configurations of shaded plaquettes

to go from one configuration to another, an even number of sites should change their states

Possible graphs

$$w(u) = \sum_{g} v(g) \Delta(u,g)$$

$$w(u) = \sum_{g} v(g)\Delta(u,g)$$
$$\downarrow$$
$$e^{-\Delta\tau J\Delta/4}$$
$$= v(\parallel) + v(\times) + v_1(\otimes)$$

$$\sinh(\Delta \tau J/2) e^{\Delta \tau J \Delta/4}$$
$$= v(=) + v(\times) + v_2(\otimes)$$

$$\cosh(\Delta \tau J/2) e^{\Delta \tau J \Delta/4}$$
$$= v(\parallel) + v(=) + v_3(\otimes)$$

Set $v_i(\otimes) = 0$

Set
$$v_i(\otimes) = 0$$

 $\hookrightarrow v(\times) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 - \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(\parallel) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 + \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(=) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{\exp\left[\Delta \tau \left(\frac{J}{2} + \frac{J \Delta}{2}\right)\right] - 1\right\}.$

Set
$$v_i(\otimes) = 0$$

 $\hookrightarrow v(\times) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 - \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(\parallel) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 + \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(=) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{\exp\left[\Delta \tau \left(\frac{J}{2} + \frac{J \Delta}{2}\right)\right] - 1\right\}.$

For the isotropic Heisenberg model $v(\times) = 0$.

Set
$$v_i(\otimes) = 0$$

 $\hookrightarrow v(\times) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 - \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(\parallel) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{1 + \exp\left[-\Delta \tau \left(\frac{J}{2} - \frac{J \Delta}{2}\right)\right]\right\},$
 $v(=) = \frac{1}{2} \exp\left(-\frac{\Delta \tau J \Delta}{4}\right) \left\{\exp\left[\Delta \tau \left(\frac{J}{2} + \frac{J \Delta}{2}\right)\right] - 1\right\}.$

For the isotropic Heisenberg model $v(\times) = 0$.

 \hookrightarrow need only two graphs

Example: isotropic Heisenberg model

Configurations are changed by flipping all the states along the loop.

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(\boldsymbol{s}, \mathcal{G}) = V(\mathcal{G})\Delta(\boldsymbol{s}, \mathcal{G}) ,$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s, \mathcal{G}) = V(\mathcal{G})\Delta(s, \mathcal{G}) , \implies W(s, \mathcal{G}) = W(s', \mathcal{G})$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

 \hookrightarrow Detailed balance is fulfilled by W(s).

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

 \hookrightarrow Detailed balance is fulfilled by W(s).

Transition probability (heat-bath)

$$p(\boldsymbol{s} \rightarrow \boldsymbol{s}', \mathcal{G}) = rac{W(\boldsymbol{s}', \mathcal{G})}{W(\boldsymbol{s}, \mathcal{G}) + W(\boldsymbol{s}', \mathcal{G})},$$

Configurations are changed by flipping all the states along the loop.

 \hookrightarrow both configurations belong to the same graph.

Since

 $W(s,\mathcal{G}) = V(\mathcal{G})\Delta(s,\mathcal{G}) , \implies W(s,\mathcal{G}) = W(s',\mathcal{G})$

Detailed balance

$$W(\boldsymbol{s},\mathcal{G}) \ p(\boldsymbol{s} \to \boldsymbol{s}',\mathcal{G}) = W(\boldsymbol{s}',\mathcal{G}) \ p(\boldsymbol{s}' \to \boldsymbol{s},\mathcal{G}) \ .$$

 \hookrightarrow Detailed balance is fulfilled by W(s).

Transition probability (heat-bath)

$$p(\mathbf{s} \to \mathbf{s}', \mathcal{G}) = \frac{W(\mathbf{s}', \mathcal{G})}{W(\mathbf{s}, \mathcal{G}) + W(\mathbf{s}', \mathcal{G})}, \implies p(\mathbf{s} \to \mathbf{s}', \mathcal{G}) = \frac{1}{2}$$

All S_T^z states accessible

Simulation in grand canonical ensemble

→ Simulation in grand canonical ensemble

→ Simulation in grand canonical ensemble

→ Simulation in grand canonical ensemble

← Simulation in grand canonical ensemble

Change of winding numbers are possible

Change of winding numbers are possible

 \hookrightarrow Simulations are ergodic

 $\hookrightarrow \textbf{Simulations are ergodic}$

World lines

Active loops

 $\hookrightarrow \textbf{Simulations are ergodic}$

World lines

Active loops

 $\hookrightarrow \textbf{Simulations are ergodic}$

World lines

Active loops

