VIII Training Course in the Physics of Correlated Electron Systems and High-T_c Superconductors 6-17 october 2003 Vietri sul Mare, Salerno, Italy

Dynamical exchange effects to the dielectric function of a two-dimensional electron gas

K. Hameeuw, F. Brosens and J. T. Devreese TFVS, Universiteit Antwerpen

Theoretische Fysica van de Vaste Stoffen

Outline

- 1. The two-dimensional electron gas: concept & experimental realisations
- 2. The dielectric function: definition and discussion
- 3. The dynamical exchange effects: the local field factor
- 4. Results
	- Dielectric function
	- Plasmon dispersion
	- Structure factor
- 5. Conclusions

1. The two-dimensional electron gas

A. Concept

- •Gas of interacting electrons
- •Motion confined in space: restricted to two-dimensions
- •Charged particles: undergo Coulomb repulsion
	- →Neutralising background
- •Fermions: obey Pauli-principle
	- \rightarrow Importance of exchange effects
- •External perturbing field

Model system "jellium": electrons moving in a homogeneous neutralising background \rightarrow only one parameter: density of the system

Model Hamiltonian in second quantisation:

$$
H = \frac{\hbar^2}{2m} \sum_{s} \int d^2 r \nabla \mathbf{y}_{s}^{*}(\vec{r}) \cdot \nabla \mathbf{y}_{s}(\vec{r})
$$

+ $e \sum_{s} \int d^2 r \mathbf{y}_{s}^{*}(\vec{r}) \Phi^{ext}(\vec{r}, t) \mathbf{y}_{s}(\vec{r})$
+ $\frac{1}{2} \sum_{s,s'} \int d^2 r \int d^2 r' \mathbf{y}_{s}^{*}(\vec{r}) \mathbf{y}_{s'}(\vec{r}') v(\vec{r} - \vec{r}', t) \mathbf{y}_{s'}(\vec{r}') \mathbf{y}_{s}(\vec{r})$

with

 $(\vec{r}), \mathbf{y}_{s}(\vec{r})$ (\vec{r}) *v*(*r*) l
E r
E \vec{x}) \vec{x} (\vec{x}) $j^{ext}(\vec{r})$: the external field ${\bf y}_{\bf s}^* (\vec{r}),$ ${\bf y}_{\bf s} (\vec{r})\,$: the Fermi field operators : the Coulomb potential

B. Experimental realisations

1) Electrons on the surface of liquid Helium

2) Si-MOSFET

•potential well created in a direction perpendicular to the surface •nearly ideal 2DES: mobility of the electrons only limited by weak interaction with ripplons •electron densities limited due to instability of liquid surface

- •no current by zero gate voltage
- •apply positive gate voltage
- •holes in p-type substrate pushed away, electrons attracted
- •electrons move in channel below the gate, the inversion layer
- •most widely used in industry

3) GaAs-AlGaAs heterostructure

•heterostructure: two semiconductors with nearly same lattice constant, but different band gap

- •band bending in the vicinity of the interfaces
- •electrons trapped in the confining potential formed at the interface
- •very high mobility due to separation of donors and carriers

4) Metallic monolayer on substrate

- •insulating substrate
- •atomic monolayer of metal grown on top
- •electrons move freely through toplayer

5) High T_c cuprates

 $YBa₂₃O_{7-x}$

•normal phase in overdoped regime •current running through twodimensional CuO-planes

2. The dielectric function

A. Definition

$$
V_{q,\mathbf{w}}^{tc} = \frac{\Phi_{q,\mathbf{w}}^{ext}}{\mathbf{e}(q,\mathbf{w})}
$$
\n
$$
V_{q,\mathbf{w}}^{tc} \rightarrow \text{potential felt by a test charge}
$$
\n
$$
V_{q,\mathbf{w}}^{tc} \rightarrow \text{potential felt by a test charge}
$$
\n
$$
V_{q,\mathbf{w}}^{tc} \rightarrow \text{in the presence of the medium}
$$

$$
V_{q,\mathbf{w}}^{tc} = \mathbf{\Phi}_{q,\mathbf{w}}^{ext} + v(q) n_{q,\mathbf{w}}
$$

 $v(q)$ \rightarrow Coulomb potential $n_{q,\textbf{w}} \rightarrow$ induced density in the medium

B. Single particle picture

m k $\vec{k} \rangle$, energy $E_{\vec{k}}$ 2 $2\mathbf{k}^2$, \vec{k} anomay $F - \hbar$ Free electron gas : electron state $|\vec{k}\rangle$, energy $E_{\vec{\iota}}=0$

Perturbation $W_{q,w}^{tot}$: total potential felt by the electron

 $v(q) n_{q,w} = -Q_0(q, \bm{w}) W_{q,w}^{tot}$ 1st order perturbation theory:

Lindhard polarisiblity:

$$
Q_0(q, w) = -\frac{2pe^2}{q} \sum_{|\vec{k}| < k_F} \left(\frac{1}{\hbar w^+ + E_{\vec{k}} - E_{\vec{k} + \vec{q}}} - \frac{1}{\hbar w^+ - E_{\vec{k}} + E_{\vec{k} + \vec{q}}} \right)
$$

C. RPA and beyond

Random Phase Approximation:

$$
W_{q,\mathbf{w}}^{tot} = v(q)n_{q,\mathbf{w}} + \Phi_{q,\mathbf{w}}^{ext} \longrightarrow \mathbf{e}(q,\mathbf{w}) = 1 + Q_0(q,\mathbf{w})
$$

Exchange and correlation effects

$$
W_{q,w}^{tot} = v(q)(1 - G(q, \mathbf{w}))n_{q,w} + \Phi_{q,w}^{ext} \rightarrow \mathbf{e}(q, \mathbf{w}) = 1 + \frac{Q_0(q, \mathbf{w})}{1 - G(q, \mathbf{w})Q_0(q, \mathbf{w})}
$$

 $G(q, w)$:local field factor

describes the exchange and correlation hole

3. Dynamical exchange effects

A. Equation of motion

$$
i\hbar \frac{d}{dt} n(\vec{r},t) = \langle \left[\mathbf{y}^* (\vec{r}^{\prime}) \mathbf{y}(\vec{r}), H \right] \rangle_t
$$

Model Hamiltonian in second quantisation:

$$
H = \frac{\hbar^2}{2m} \sum_{s} \int d^2 r \nabla \mathbf{y}_{s}^{*}(\vec{r}) \cdot \nabla \mathbf{y}_{s}(\vec{r})
$$

+ $e \sum_{s} \int d^2 r \mathbf{y}_{s}^{*}(\vec{r}) \Phi^{ext}(\vec{r}, t) \mathbf{y}_{s}(\vec{r})$
+ $\frac{1}{2} \sum_{s,s'} \int d^2 r \int d^2 r' \mathbf{y}_{s}^{*}(\vec{r}) \mathbf{y}_{s'}(\vec{r}') v(\vec{r} - \vec{r}', t) \mathbf{y}_{s'}(\vec{r}') \mathbf{y}_{s}(\vec{r})$

•Hartree-Fock decoupling on the four-field operator terms

$$
\langle \mathbf{y}_1^* (\vec{r}') \mathbf{y}_2^* (\vec{r}') \mathbf{y}_3 (\vec{r}) \mathbf{y}_4 (\vec{r}) \rangle = \langle \mathbf{y}_1^* (\vec{r}') \mathbf{y}_4 (\vec{r}) \rangle \langle \mathbf{y}_2^* (\vec{r}') \mathbf{y}_3 (\vec{r}) \rangle - \langle \mathbf{y}_1^* (\vec{r}') \mathbf{y}_3 (\vec{r}) \rangle \langle \mathbf{y}_2^* (\vec{r}') \mathbf{y}_4 (\vec{r}) \rangle
$$

•Linearisation in the external field •Variational solution of the TDHF-equation

$$
\rightarrow e(q, w) = 1 + \frac{Q_0(q, w)}{1 - G(q, w)Q_0(q, w)}
$$

B. Local field factor

Expressed in Fermi units, $G(k,n)$ independent of density

$$
G(k,\mathbf{n}) = \frac{r_s^2}{4k\mathbf{p}^2} \frac{I_G(k,\mathbf{n})}{Q_0^2(k,\mathbf{n})}, \qquad k = \frac{q}{k_F}, \quad \mathbf{n} = \frac{\hbar \mathbf{w}}{2E_F}.
$$

Function $I_G(k,n)$: fourfold integral

$$
I_G(k,\mathbf{n}) = \int d^2r \int d^2r' \frac{\left(N(\vec{r} + \frac{\vec{k}}{2}) - N(\vec{r} - \frac{\vec{k}}{2})\right)\left(N(\vec{r}' + \frac{\vec{k}}{2}) - N(\vec{r}' - \frac{\vec{k}}{2})\right)}{|\vec{r} - \vec{r}'|}
$$

$$
\times \frac{1}{\mathbf{n} + i\mathbf{d} - \vec{r} \cdot \mathbf{n}} \left(\frac{1}{\mathbf{n} + i\mathbf{d} - \vec{r}' \cdot \mathbf{n}} - \frac{1}{\mathbf{n} + i\mathbf{d} - \vec{r} \cdot \mathbf{n}}\right)
$$

C. Fourfold integral

ν(k)

F. Static case: *G*(*q,0*)

B. C. Larson, J. Z. Tischler, E. D. Isaacs, P. Zschack, A. Fleszar, and A.G. Eguiluz, Phys. Rev. Lett. **77**, 1346 (1996)

4. Results

Comparison with:

 $\mathsf{RPA} : \boldsymbol{e} \big(q, \boldsymbol{w} \big) \!=\! 1 \!+\! Q_{0} \big(q, \boldsymbol{w} \big)$ $e(\bm{q},\bm{w})$ $= 1 + Q_{0}(q,\bm{w}) (1-G(q,\bm{w})Q_{0}(q,\bm{w}))$

A. Czachor, A. Holas, S. R. Sharma and K. S. Singwi, Phys. Rev. B **25**, 2144 (1982)

Structure factor

$$
S(k,n) \propto \text{Im}\left\{-\frac{1}{e(k,n)}\right\}
$$

Absolute IXS-measurements made Absolute IXS-measurements made on Al for $q{=}k_F^{}$ and $q{=}1.5k_F^{}$

J. Z. Tischler, B. C. Larson, P. Zschack, A. Fleszar, and A.G. Eguiluz, phys. stat. sol (b) **1**, 280 (2003)

Conclusions

•new expression for the dynamic local field factor *G*(*k,n*) of a 2DEG via a variational solution of the TDHF-equation for the density matrix

 \bullet $G(k,n)$:

- •takes into account full wave vector and frequency dependence
- •has a pronounced frequency dependence
- •density independent when expressed in Fermi units
- •useful input for DFT
- •internal consistency requirements are fulfilled by the current approach;
- approach extents the perturbative approach of Czachor *et al.*
- •inclusion of dynamical exchange effects shown to have a pronounced
- effect on the dielectric function and the structure factor
- •no experiments available yet for the two-dimensional system