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Abstract

The general two-electron wavefunctions obeying the Pauli exclusion principle and An-
derson criteria for Cooper pairs are constructed for D2h and D4h symmetries. It is shown
that in axial symmetry groups the Blount theorem is violated and lines of nodes of triplet
superconducting order parameter are required by the symmetry..Application of the results
to hight-Tc superconductors and feroomagnetic sureconductor UPt3 are discussed.

1 Introduction
The signature of unconventional superconductivity, both heavy fermion (HF) and high -Tc, is a
breaking of di¤erent symmetries, including time reversal symmetry. In contrast with standard
BCS superconductivity where superconducting order parameter (SOP) is totally symmetric
(belongs to a1g irreducible representation (IR)), SOP of unconventional superconductors belongs
to others IRs of point groups. We refer the reader to two reviews on high -Tc [1] and HF [2]
superconductors. Since the underlying symmetries of unconventional superconductors are very
signi…cant in understanding of their pairing nature, there are three di¤erent group theoretical
approaches to the description of the SOP symmetry: point group approach [2, 3, 4, 5, 6, 7, 8, 11,
12, 13, 14] , space-group approach [15, 16, 18, 19, 20, 21] and unitary group approach.[22, 23, 24].
The SOP symmetry of high -Tc superconductors was considered in a framework of all these
approaches [11, 12, 13, 14, 19, 22, 23]

The starting point of all approaches is the Anderson [3] description of the Cooper pair in
(~k-~k) manifold.

Anderson showed that the wavefunctions of electrons in a singlet pair are connected by the
time-reversal and the pairing operator is written as:
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The wavefunctions of electrons in a triplet pair are connected by the time-reversal, space
inversion and their product The three components of the wavefunction for a triplet case, cor-
responding to Ms = 1, 0, ¡1 are written as:
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The Cooper pair’s wavefunction is invariant with respect to lattice translations, hence it
belongs to irreducible representation of point group and is characterized by parity [3].

In a point group approach the symmetry of the SOP is described in terms of algebraic
functions belonging to the IRs of point group under consideration and hence its conclusions
depend on the choice of basis functions and are ambiguous [10]. The results of point group
approach in many cases correctly re‡ect symmetry properties of SOP, but they can’t be used
in quantum mechanical calculations, since they do not express Cooper pair wavefunction as
two-electron wavefunction obeying the Pauli exclusion principle. The power-low temperature
dependence of physical properties below Tc indicates that the superconducting gap vanishes at
points and on the lines at Fermi surface [1, 2]. According to the Blount theorem, there are no
group-theoretical requirement for the triplet SOP in a strong spin- orbit coupling case [5].

The basic idea of a space group approach is to construct general two electron wavefunction
on the basis of the correct functions belonging to the space-group IRs and retain only those
pairs for which the Anderson criteria are ful…lled. The space group approach was used to …nd
all possible IR for Cooper pair wavefunction but the general wavefunction of Cooper pairs
were not constructed so far. It was also shown that di¤erent types of time-reversal symmetry
violations result in violations of the Blount theorem [19, 20, 21].

In the present work the induced representation method is applied to obtain the nodal struc-
ture of SOP for D2h and D4h symmetries. It is also shown that the violations of the Blount
theorem may be connected with symmetry breaking from highest point symmetry Oh to axial
point group symmetry. General two-electron wavefunction are constructed for D2h and D4h

symmetries making use of Anderson formulae (1), (2), (3), (4). and standard projection op-
erators technique. Applications of the theoretical results to high -Tc superconductors and HF
superconductor UPt3 are discussed.

2 Theory

2.1 Induced representation method

The one-electron states in a solid are labelled by two quantum numbers: the wave vector ~k
taken in the representation domain of a Brillouin zone and the index κ of small IR qκ of the
wave vector group H [25, 26, 27, 28] . The structure of IR of the space group G depends on
the left coset decomposition of G with respect to H:

G =
X

i

siH, i = 1... jGj / jH j (5)

Where jj stands for the number of elements in a group. The action of rotational elements

of coset representatives si results in all prongs of the wave vector star
n
~k
o

.

The induced representation is de…ned by the following formula:

(qκ " G)(g)iµ,jν = qκ(s
¡1
i gsj)µνδ(s

¡1
i gsj ,H) (6)

where:δ(s¡1i gsj ,H) = f 1, if s¡1i gsj 2 H
0, ifs¡1i gsj 62 H
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If the basis set of IR qκ fφkg is known , the basis set of induced representation is obtained
by the action left coset representatives on it :

f©g =
X

i

sifφkg, i = 1... jGj / jH j (7)

The induced representation and its basis set de…ned by formula (7) may be or. may not be
irreducible. In the case of the space group G and its little group H the induced representation
(6) is irreducible and is used throughout [25, 26, 27, 28] in solid state physics.

Since the symmetry of one-electron states is de…ned, they will be used for constructing two-
electron states, namely Cooper pair, making used of general principles of quantum mechanics.
According to the Pauli exclusion principle the spatial part of a singlet Cooper pair wavefunction
belongs to the symmetrized Kronecker square of the IR qκ " G and the spatial part of a triplet
pair belongs to antisymmetrized Kronecker square of the same IR . In the case of strong spin-
orbit coupling Cooper pair wavefunction pair belongs to the antisymmetrized Kronecker square
of the double-valued IR .

The Kronecker product of induced representation may be decomposed making use of the
Mackey theorem on symmetrized squares [26]. Its structure depends on the double coset de-
composition of the space group G with respect to the wave vector group H:

G =
X

σ

HdσH (8)

For every dσ including identity element we consider an intersection subgroup Mσ = H \
dσHd¡1σ and its representation de…ned by the formula:

Pσ = qκ(m)£ qκ(d
¡1
σ mdσ) (9)

where £ denotes direct (Kronecker ) product of representations.
Corresponding wave vector

¡!
k σ is de…ned by the following formula

¡!
k + dσ

¡!
k =

¡!
k σ +

¡!
b σ (10)

where
¡!
b σ is a vector of reciprocal lattice.

For
¡!
k a general point in Brillouin zone

¡!
k σequals zero if dσ is a space inversion. This case

corresponds to formulae (1), (2), (3), (4).
For any self-inverse double coset σ = α (that is HdσH = Hd¡1σ H) there are two extensions

P §
α of Pα into extended intersection subgroup ~Mα:

~Mα = Mα + aMα (11)

(where a = dσh1 = h2dσ and h1, h2 2 H). These two extensions correspond to symmetrized
and antisymmetrized squares. Their characters on group Mα are the same and for the elements
of the left coset aMα are de…ned by two following formulae respectively:

χ(P +
α (am)) = +χ(qκ(amam)) (12)

χ(P¡
α (am)) = ¡χ(qκ(amam)) (13)

In the above notations symmetrized and antisymmetrized parts of the Kronecker square of
induced representation are written as :

3



[qκ " G £ qκ " G] = [qκ £ qκ] " G+
X

α

P +
α " G+

X

β

Pβ " G (14)

fqκ " G £ qκ " Gg = fqκ £ qκg " G+
X

α

P¡
α " G+

X

β

Pβ " G (15)

The …rst items on the right correspond to the double coset de…ned by the identity element
for which the small representations qκ are symmetrized (antisymmetrized) over the H group.
The sums in the second items correspond to the self-inverse double cosets discussed above and
the third items correspond to the not self-inverse double cosets for which HdβH 6= Hd¡1β H . It
follows from the Mackey theorem that types of quasi-particles which it is possible to construct
from two equivalent electrons depend on the double coset decomposition of the space-group
with respect to the wave vector group. Hence these types depend on the position of a wave
vector in one-electron Brillouin zone. In the present work we consider pairs corresponding to
the double coset de…ned by the space inversion. It follows from formula (10) that the wave
vector of a Cooper pair equals zero in this case and its wavefunctions are classi…ed according
to IRs of the point group Ĝ which is a central extension of a space group G.

For ~k a general point in a Brillouin zone the extended intersection subgroup ~Mα is a group
Ci consisting of the identity element E and the space inversion I . It follows from formulae (9),
(12) and (13) that the spatial part of a singlet pair belongs to IR Ag and the spatial part of
a triplet pair belongs to IR Au of a group Ci. The induced representations P§

α " G may be
decomposed making use of Frobenius reciprocity theorem [28].: the number of appearance of the
IR ¡ of the group G in the decomposition of the induced representation P§

α " G equals to the
number of appearance of the IR P §

α in the decomposition of ¡ when it subduced to H. Hence
for ~k a general point in a Brillouin zone we obtain that for the spatial part of a singlet pair all
even representations are possible and for the spatial part of a triplet pair all odd representations
are possible. The same conclusion is also valid for total wavefunctions of Copper pairs since
multiplication by even spin singlet S0 and spin triplet S1 wavefunctions doesn’t change parity.
It also follows from Frobenius reciprocity theorem that for ~k a general point in a Brillouin zone
the number of appearance of any IR (even for singlet pairs and odd for triplet pairs) equals
to its dimension. As the result, for two-dimensional IRs (Eg and Eu in D4h symmetry) two
linearly independent basis sets are possible. This is illustrated in the next section by direct
construction of the basis set.

We adopt Kovalev’s [25] notations for the point group operations, which are presented in
Appendix.

On the planes of symmetry in Brillouin zone the little group H contains a re‡ection operators
and the extended intersection group ~Mα consists of four elements.

The characters of symmetrized and antisymmetrized Kronecker squares belong to IRs Ag

and Au respectively. Since not all the IRs of the group C2h are present, it follows from the
Frobenius reciprocity theorem, that some of the IRs of the whole group are forbidden if the
~k vector is on this plane. The intersection of this plane with the Fermi surface results in a
line of nodes of any particular IR. If ,for example, this IR is responsible for superconductivity
this corresponds to the line of nodes of superconducting order parameter. In a weak spin-orbit
coupling case lines of nodes follows from the symmetry both for triplet and singlet pairs.

In a strong spin-orbit coupling case spins of electrons are coupled with their spatial parts in
each ~k¡~k manifold. To obtain the characters of the total wavefunction one should multiply the
characters of the spatial part by the spin singlet and spin triplet wavefunctions..In the highest
point symmetry Oh these spin parts belong to IRs A1g and T1g respectively. The character for
the singlet pair is unchanged, but the decomposition of the character in a triplet case contains
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characters of all IRs of group C2h. This means that there are not symmetry requirements for
the lines of nodes for triplet pairs in a strong spin-orbital case. (Blount theorem [5] ). When
the symmetry is reduced from the highest point symmetry Oh to axial symmetry group D4h the
IR of spin triplet wavefunction is reduced to two A2g and Eg. Decomposition P¡

α £ Eg # C2h

contains two IRs 2Au of group C2h and it follows that not all odd IR appear in the induced
representation. Similar consideration is valid for the product P ¡

α £A2g # C2h. If the interaction
of electron spin with lattice is not negligible the spin states Eg and A2g are splitted and generally
speaking only one of them corresponds to Cooper pairs. Hence it follows that lines of nodes are
possible for triplet states in strong spin-orbit coupling case. Similar decomposition is presented
in Table 1. for all planes of symmetry of group D2h. For all planes the spin is of pair is directed
in z direction. This approach corresponds to strong interaction of electron spin with lattice.
Note that in Refs. [19, 20, 21] spin-lattice interactions were neglected and spin was quantized
along the directions perpendicular to the planes.

Table 1. Decomposition of Kronecker products for di¤erent planes of symmetry
product character decomposition

E σh I C2

P+
α 1 1 1 1 Ag

P¡
α 1 1 ¡1 ¡1 Bu

plane (001) h1 h28 h25 h4
P¡

α £ Eg # T1g 3 ¡1 ¡3 1 2Au + Bu

P¡
α £ Eg # C2h 2 ¡2 ¡2 2 2Au

P¡
α £ A2g # C2h 1 1 ¡1 ¡1 Bu

plane (100) h1 h26 h25 h2
P¡

α £ Eg # C2h 2 0 ¡2 0 Au + Bu

P¡
α £ A2g # C2h 1 ¡1 ¡1 1 Au

plane (110) h1 h40 h25 h16
P¡

α £ Eg # C2h 2 0 ¡2 0 Au + Bu

P¡
α £ A2g # C2h 1 ¡1 ¡1 1 Au

Making use of Table 1 and Frobenius reciprocity theorem possible IRs of Cooper pairs are
constructed for groups D2h and D4h and presented in Tables 2 and 3. If IR responsible for the
Cooper pairing is known, the absence of this IR in the decomposition for any plane indicated
line of nodes of SOP. On the other hand if experimental nodal structure of SOP is known
comparison with theoretical data may be useful to obtain index of IR responsible for Cooper
pairing.

Table 2. Possible IRs of spatial parts of Cooper pairs for ~k at the planes of symmetry.
D2h point group.
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plane(001)
weak S-O coupling
singlet Ag + B1g

triplet B2u + B3u

strong S-O coupling
triplet (x̂,ŷ) 2Au + 2B1u

triplet (ẑ) B2u + B3u

planes (100) and (010)
weak S-O coupling
singlet Ag + B3g

triplet B1u + B2u

strong S-O coupling
triplet (x̂,ŷ) Au + B1u + B2u + B3u

triplet (ẑ) Au + B3u

Table 3. Possible IRs of spatial parts of Cooper pairs for ~k at the planes of symmetry.
D4h point group.
plane (001)
weak S-O coupling
singlet A1g + A2g + B1g + B2g

triplet 2Eu

strong S-O coupling
triplet (x̂,ŷ) 2(A1u +A2u + B1u + B2u)
triplet (ẑ) 2Eu

planes (100) and (010)
weak S-O coupling
singlet A1g + B1g + Eg

triplet A2u + B2u + Eu

strong S-O coupling
triplet (x̂,ŷ) A1u + A2u + B1u +B2u +Eu

triplet (ẑ) A1u + B1u + Eu

planes (110) and (¹110)
weak S-O coupling
singlet A1g + B2g + Eg

triplet A2u + B1u + Eu

strong S-O coupling
triplet (x̂,ŷ) A1u + A2u + B1u +B2u +Eu

triplet (ẑ) A1u + B2u + Eu

2.2 Projection operator technique

For for ~k a general point in a Brillouin zone the basis function belonging to the group ~Mα are
the Anderson functions for singlet and triplet cases. The basis functions for the whole group
may be obtained by projection operators technique. Let us denote ~k1 the wave vector chosen
in the representation domain of a Brillouin zone. Making use of Kovalev’s notation h25 for the
space inversion the spatial parts of Anderson singlet and triplet functions are written as:

©s
1 = ψ1

1ψ
2
25 +ψ1

25ψ
2
1 (16)
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©t
1 = ψ1

1ψ
2
25 ¡ ψ1

25ψ
2
1 (17)

Where the superscript of ψ denotes the number of electronic coordinate and subscript of ψ the
prong of the ~k-vector star . Subscript of © is the same as that of the …rst appearing ψi in the
right hand side. The other subscript in right hand side in all cases corresponds to the action
of h25 on the …rst ψi.

Acting by pure rotations belonging to D2h group on these function we can easily obtain all
other basis functions:

©s
2 = ψ1

2ψ
2
26 +ψ1

26ψ
2
1 (18)

©t
2 = ψ1

2ψ
2
26 ¡ ψ1

26ψ
2
2 (19)

©s
3 = ψ1

3ψ
2
27 +ψ1

27ψ
2
3 (20)

©t
3 = ψ1

3ψ
2
27 ¡ ψ1

27ψ
2
3 (21)

©s
4 = ψ1

4ψ
2
28 +ψ1

28ψ
2
4 (22)

©t
4 = ψ1

4ψ
2
28 ¡ ψ1

28ψ
2
8 (23)

These functions span the space of Anderson function under the action of all point group
operations. Since the space inversion is already included in the basis function, their total
number equals to the half of number of point group operations. When action by pure rotations
on the initial vector ~k1 result in a star whose number of prongs is half of the number of prongs
in the star of wave vector and we call it a halfstar. We assume that the action of the space
inversion on the basis vector corresponding to any prong of a halfstar doesn’t change a vector
but introduces multiplies ¡1 for the triplet case. Making use of standard projection operator
technique and functions ©s,t

1¡4 we easily obtain the basis functions for Cooper pairs belonging
to all IRs of D2h group. The results are presented in Table 4.

Table 4 Possible spatial parts of singlet Cooper pair wavefunctions in D2h symmetry.
To obtain wavefunctions of triplet pairs one should replace subscripts g to u in the …rst

column and all superscripts s to t in the second column without changing of the signs.
IR wavefunction
A1g ©s

1 + ©
s
2 + ©

s
3 + ©

s
4

B1g ©s
1 ¡ ©s

2 ¡ ©s
3 +©

s
4

B2g ©s
1 ¡ ©s

2 + ©
s
3 ¡ ©s

4

B3g ©s
1 + ©

s
2 ¡ ©s

3 ¡ ©s
4

Before going to the projection for D4h group is useful to remind that the correspondence of
IRs in the subduction D4h # D2h is as follows: A1 and B1 ¡! A1:, A2 and B2 ¡! B1, E ¡!
B2+B3. The basis functions for one-dimensional IRs of D4h group are immediately obtained by
projection operator technique. Since each of IRs Eg(u) appear twice in the Kronecker product
decomposition there are two independent basis sets labeled by additional quantum numbers .
Bearing in mind the above reduction scheme of IRs we begin with basis sets corresponding to
IRs B2 and B3 and make use of formula (7). choosing h13 as left coset representative we obtain
the remainder results of Table 5.

Table 5 Possible spatial parts of singlet Cooper pair wavefunctions in D4h symmetry.

7



To obtain wavefunctions of triplet pairs one should replace subscripts g to u in the …rst
column and all superscripts s to t in the second column without changing of the signs.

IR pairing function
A1g ©s

1 +©
s
2 +©

s
3 +©

s
4 +©

s
13 +©

s
14 +©

s
15 +©

s
16

A2g ©s
1 ¡©s

2 ¡ ©s
3 + ©

s
4 ¡ ©s

13 +©
s
14 +©

s
15 ¡ ©s

16

B1g ©s
1 +©

s
2 +©

s
3 +©

s
4 ¡©s

13 ¡ ©s
14 ¡ ©s

15 ¡ ©s
16

B2g ©s
1 ¡©s

2 ¡ ©s
3 + ©

s
4 + ©

s
13 ¡ ©s

14 ¡ ©s
15 + ©

s
16

Eg(B2g) ©s
13 ¡ ©s

15 + ©
s
14 ¡ ©s

16

©s
1 ¡©s

2 +©
s
3 ¡ ©s

4

Eg(B3g) ©s
1 +©

s
2 ¡©s

3 ¡ ©s
4

©s
13 +©

s
15 ¡ ©s

14 ¡ ©s
16

For ~k a general point in a Brillouin zone all IRs are possible for Cooper pair. But when
the ~k-vector approaches any mirror plane the mirror re‡ection image of ~k also approaches
the ~k-vector. Total number of states decreases and lines of nodes are eventual. There are two
possibilities If two-electron function is unchanged under the action of the re‡ection, the function
under consideration is nonvanishing on the mirror plane. On the other hand if the function
changes its sign, two mirror counterparts are cancelling on the plane. This corresponds to the
line of nodes.

Making use of the above rules and the date of Table A2 we can easily obtain nodal structure
of basis functions of one dimensional IRs of groups D2h and D4h presented in Tables 4 and 5.
The results are in agreement with the data of tables 2 and 3. obtained making use of Mackey
theorem. Two dimensional IRs appear twice for ~k a general point in a Brillouin zone. It is
seen from Table 3 that at basal plane two-dimensional IR are forbidden and on vertical planes
they appear only once. In this case a direct analysis of nodal structure of basis functions
of Table 5 is required. The analysis shows that basis functions of the …rst row of both two
dimensional IRs vanish at the planes [010] and [001] and the basis functions of the second
rows vanish at the planes [100] and [001]. Of course any linear combination of these functions
is also basis function having the same nodal structure. If we take the sum of basis function
Eg(B2g) +Eg(B3g) additional lines of nodes appear in the plane [110]. The linear combination
with minus sign has nodes in the plane [110]. It should be noted that point group approach
also results di¤erent nodal structure of di¤erent two-dimensional IRs [4] .

3 Discussion of the results

3.1 High-Tc superconductors

The analysis of broad set of experimental data on the of high-Tc superconductors [1] led the most
of the authors to the conclusion of singlet pairing and Ag SOP symmetry in these compounds.
Angular resolved photoelectron spectra of high-Tc superconductors [29] reveal a strong trough
in the diagonal of xy plane indicating dx2¡y2 pairing with line of nodes . On the other hand
some experiments reveal also totally symmetric s pairing without nodes. In many cases an
interplay between these two types of pairing [1] both belonging to Ag IR exists. It is seen from
tables 2 and 4, that Ag pairing function, obtained group theoretically is noddles and that other
IRs have nodes in the coordinate planes only. Hence it follows that nodal structure high-Tc

superconductors is more complex then that which follows from the symmetry only. To explain
this one can consider two wave vectors ~kα and ~kβ symmetrical with respect to diagonal of the
deformed square ( Note that the orthorombicity [(b-a)/(b+a)] of YBCuO is about 2 % only
[1]).. Two types of basis functions of Cooper pairs belonging to Ag IR ©s

α and ©s
β are easily
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obtained from the Table 4 by introducing additional subscripts α and β. One can suppose that
due to the interaction two self-vectors are linear combinations of these basis states :

©S
s = Cα

¡
©S
1,α +©

S
2,α +©

S
3,α +©

S
4,α

¢
+Cβ

¡
©S
1,β + ©

S
2,β +©

S
3,β + ©

S
4,β

¢
(24)

©S
x2¡y2 = Cβ

¡
©S
1,α +©

S
2,α +©

S
3,α +©

S
4,α

¢
¡ Cα

¡
©S
1,β +©

S
2,β + ©

S
3,β +©

S
4,β

¢
(25)

Both combinations belong to IR Ag.of group D2h. First one corresponds to the noddles
s-pairing and the second to the dx2¡y2¡pairing with line of nodes in the diagonal direction xy-
plane . In the limit of zero orthorombic distortion the symmetry group is D4h and Cα = Cβ ,
subscripts α and β are dropped and the sums in second brackets in right hand sides of (24)
and (25) are written as ©S

13 +©
S
14+©

S
15 +©

S
16. In this case combination (24) belongs to IR A1g

and combination (25) belongs to IR B1g of the symmetry group D4h. Hence it follows that the
nodal structure of SOP in high- Tc superconductors is de…ned by hidden symmetry D4h.

3.2 Antiferromagnetic and ferromagnetic structures

To obtain all possible pairing states in a strong orbit coupling case one should take into account
two directions of spin connected at general point of a Brillouin zone by time-reversal only
(Kramers degeneration). This can be done by making use antisymmetrized Kronecker square of
double valued corepresentations [21] . This procedure results a character (χnormal) corresponding
to all possible pairing states in normal state of the crystal. The phase transition to ferromagnetic
state may be described as time-reversal symmetry breaking. The character of this state equals
to the antisymmetrized square of double valued IR of the space group. Similar state with
opposite direction of spins has the same character. In antiferromagnetic state the spins of two
electrons are opposite and its total character is written as [21]

χaitif = χnormal ¡ 2χferro (26)

This direct calculation shows that ferromagnetic state is always odd , but antiferromagnetic
states may be even and odd states [21]. Violations of these results are not known to the author
so far.

The antisymmetrized Kronecker squares of double-valued IRs and corepresentations for
groupD4

6h (symmetry group of UPt3) of are presented in Table 6. Starting from the general
point of the Brillouin zone where all IRs of any parity are possible we are able to enumerate all
directions and planes, where some IR is absent and thus indicate point and line nodes of the
SOP. For the lines of symmetry, the Kronecker square depends on the index of the small IR
and the symmetry analysis depends on the symmetry of the one-electron state. There are two
double valued IRs on the planes of symmetry, but their Kronecker squares are the same. Thus
on the planes of symmetry the results of the space-group approach to the SOP do not depend
on any choice of basis functions.

Table 6.
Possible IRs of Cooper pair of the space group D4

6h.

9



state k(H),IR IRs of Cooper pair
direction
¢(C6v)

all p1, p2 A1g + A1u + E1u

p3 A1g + A1u + B1u +B2u

planes
Ferromagnetic odd ¡KM1) A1u + A2u + 2E2u

Antiferromagnetic odd B1u + B2u + 2E1u

Antiferromagnetic even A1g + A2g + 2E2g

normal All IRs except E1g,B1g and B2g

Ferromagnetic odd ¡ML2) A1u + B2u + E1u +E2u

Antiferromagnetic odd A2u + B1u + E1u +E2u

Antiferromagnetic even A1g + B2g + E1g +E2g

normal All IRs except A2g and B1g

Ferromagnetic odd ¡KH3) A1u + B1u + E1u +E2u

Antiferromagnetic odd A2u + B2u + E1u +E2u

Antiferromagnetic even A1g + B1g + E1g +E2g

normal All IRs except A2g and B2g
1) Basal plane
2) Vertical plane perpendicular to the lateral face of Brillouin zone
3) Vertical plane passing via lateral edge of Brillouin zone
Some of the existing models of superconductivity of UPt3 connect the double superconduct-

ing transition which is seen in heat capacity [30] and ultrasonic attenuation [31] experiments
in a magnetic …eld, with two-dimensionality of the SOP. The E1u model was proposed in Refs.
[32, 33] . The E2 and E2u models were proposed in Refs. [34] and [35, 36] respectively. An
E1g model was considered in Ref. [37]. The second type of models connects the double su-
perconducting transition with two one-dimensional IRs. In Ref. [38]. the scenario [42]of a
superconducting transition based on the IR A2u , whose degeneracy is lifted by spin-orbit cou-
pling, was developed, but the possibilities of B1u and B2u were also considered. The model
of Ref. [39] is based on the idea of two nearly degenerated one-dimentsional representations
A and B. The scenario of superconducting transition in UPt3 based on IRs A1u and A2u was
proposed in Ref. .[40] The third type of model is based on both types of IRs - one-dimensional
and two-dimensional. The singlet pairing based on the IRs A1g and E1g was also considered
in Ref. [40] . The model of Ref. [41] includes the A1 + E1 symmetry of the superconducting
state. Thus almost all the IRs and several their combinations have been discussed as possible
candidate for the description of the superconducting state in UPt3.

We are in position to show how the space-group approach makes it possible to …nd the
symmetry of SOP, which corresponds to the experimental data. UPt3 is an antiferromagnetic
superconductor [42] with odd SOP [43] , so we limit our consideration of Table 6 to the odd IRs
corresponding to antiferromagnetic phase. Experimental data .[44] indicate a line of nodes in
the basal plane and hence it follows from the Table 6 that IRs A1u, A2u and E2u are appropriate
candidates. Experiments [44] also indicate point node (nodes) in vertical direction and IR A1u

having lines of nodes in two sets of vertical planes should be excluded. Both remaining IRs
E2u and A2u have point nodes in vertical direction and are appropriate candidates. The double
superconducting transition in UPt3 is usually connected with the two-dimensionality of SOP
(see e.g. [44]) and we adopt this point in the present work. Hence we conclude from the data
of Table 6, that there is an agreement with all experimental data for the IR E2u only.

It should be also noted that the analysis of recent experiments on anisotropic magnetization
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of superconducting UPt3 [45] leaved two possibilities for SOP: E1g and E2u. It follows from the
Table 6 that the nodal structure of these two IRs is the same, but the assumption of the odd
one is in agreement with Knight shift experiments [43, 46]. Hence it follows the result of our
theoretical analysis of experimental data is in agreement with the results of Refs. [34, 35, 36, 45].

It should be emphasized that the corollary of the Frobenius reciprocity theorem that two-
dimensional IRs appear twice is reinforced by the double superconducting transition in UPt3
[9].(Note that it is not a pure mathematical fact, bur consequence of conservation of total space
dimension of two one-electron states in the two-electron state). In our approach two almost
degenerate E2u states interact forming two self-vectors, corresponding to two superconducting
transitions.

Possible applications of the developed technique to recently discovered ferromagnetic super-
conductors should be also discussed. Muon spin-relaxation experiments [47] on the supercon-
ducting Sr2RuO4 reveal spontaneous appearance of internal magnetic …eld below the transition
temperature: the appearance of such a …eld indicates that the superconducting state in this ma-
terial is characterized by the breaking of time-reversal symmetry. Knight-shift measurements
of Sr2RuO4 using 17O NMR show no change in spin susceptibility on passing through the su-
perconducting transition temperature, which provides the de…nitive identi…cation of Sr2RuO4

as a spin-triplet (odd-parity) superconductor [48].
As a …rst approximation ferromagnetic ‡uctuations can be described as removing of time-

reversal from the symmetry group [27]. On the other hand, all Shubnikov groups compatible
with ferromagnetism are already enumerated, leaving only one possibility, namely 4/mm0m0
for ferromagnetic superconductor with D4h point group [49].

The space-group approach can be easily generalized on strong spin-orbit coupling case and
Shubnikov groups of type III making use of the spin-space-group approach of Brinkman and
Elliott [50] as follows. The left coset representatives in formula (7) act also on the spin part
of Anderson function . If any of the point operations is associated with time-reversal, the
directions of spins in a pair are reversed.

3.3 Conclusion

Space group approach to the wavefunction of a Cooper pair is developed with projection op-
erator technique and applied to construction of Cooper pair wavefunction In D2h and D4h

symmetries relevant to high-Tc superconductors. The nodal structure of SOP is obtained and
discussed for D2h , D4h and D6h symmetries. It is shown that violations of Blount theorem
accompany symmetry breaking to axial point groups. It restless in appearance of lines of nodes
for triplet SOP in strong spin-orbit coupling case. It is obtained that experimentally observe
nodal structure of SOP in high-Tc superconductors follow from the hidden symmetry D4h.

The theoretical results for D6h are used to analyze experimental data for antiferromagnetic
superconductor UPt3 and it is proposed that superconductivity in this HF compound is de…ned
by the SOP corresponding to two almost degenerate E2u IR.
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4 Appendix
In appendix we present for convenience of reader Kovalev’s [25]. notations of group operators
and part of group multiplication table, which is used for nodal structure analysis. In this
notations for Oh group the element h1...h24 correspond to pure rotations , h25 is the space
inversion and the elements h25...h48 are left cosets by space inversion as follows

h25 ¤ hi = hi+24 ,1 · i · 24 (27)

and:

h25 ¤ hj = hj¡24 ,25 · J · 48 (28)

Table A1. Kovalev’s notations of the elements of D4h group
operation angle axis operation axis

h1 identity h25 inversion
h2 rotation 180± [100] h26 re‡ection [100]
h3 rotation 180± [010] h27 re‡ection [010]
h4 rotation 180± [001] h28 re‡ection [001]
h13 rotation 180o [¹110] h37 re‡ection [¹110]
h14 rotation 90o [001] h38 I £ h14
h15 rotation 270o [001] h39 I £ h15
h16 rotation 180o [110] h40 re‡ection [110]

To envisage the analysis of nodal structure of SOP we present also part of group multi-
plication table [25], representing the action of re‡ections on spatial part of singlet Anderson
function. Note that for triplet function the minus sign should be added in all cases.

Table A2. Mirror counterparts of singlet Anderson functions.
(obtained by the action of the operators of the …rst row on the functions of the …rst column.)

h26 h27 h28 h37 h40
©s
1 ©s

2 ©s
3 ©s

4 ©s
13 ©s

16

©s
2 ©s

1 ©s
4 ©s

3 ©s
14 ©s

15

©s
3 ©s

4 ©s
1 ©s

2 ©s
15 ©s

14

©s
4 ©s

3 ©s
2 ©s

1 ©s
16 ©s

13

©s
13 ©s

14 ©s
15 ©s

16 ©s
1 ©s

4

©s
14 ©s

13 ©s
16 ©s

15 ©s
3 ©s

2

©s
15 ©s

16 ©s
13 ©s

14 ©s
2 ©s

3

©s
16 ©s

15 ©s
14 ©s

13 ©s
4 ©s

1
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