Two-Dimensional *t*-*J* **Model in a Staggered Field**

Yasuhiro Saiga, Masaki Oshikawa (Tokyo Inst. Technology, Japan)

- 1. Introduction
 - \star Experiments in high- T_c cuprates (YBCO)
 - \star Our motivation
 - \star Hamiltonian
- 2. Numerical Results
 - \star Binding energy
 - * Equal-time correlation functions
 (hole, staggered-spin, superconducting)
 - \star Pair spectral function
- 3. Discussion and Summary

Previous phase diagram of YBCO

* The AF and SC phases are well separated (also for other high- T_c cuprates).

```
\bigcup_{\text{competition}?}
```

Coexistence of superconductivity and commensurate AF order in YBCO

 \diamond elastic neutron scattering in YBa₂Cu₃O_{6.5} [Sidis et al. '01]

★ The magnetic peak intensity exhibits a marked enhancement at $T_{\rm c}$.

 \diamond elastic neutron scattering in YBa₂Cu₃O_{6.6} [Mook et al. '01, '02]

★ Searches for magnetic order in YBa₂Cu₃O₇ show no signal while a small magnetic intensity is found in YBa₂Cu₃O_{6.45}.

Possible coexistence of dSC and AF in the (ordinary) 2D t-J model

(1) variational Monte Carlo method[Himeda-Ogata '99]

(2) quantum Monte Carlo method [Sorella et al. '02]

Our motivation

Does antiferromagnetism compete or coexist with superconductivity on a square lattice?

 \diamond The presence of staggered field is expected to produce (or strengthened) the AF order irrespective of the hole density.

How does the superconducting correlation change?

 \downarrow

t-J model in a staggered field

$$\mathcal{H} = -t \sum_{\langle ij \rangle \sigma} \left(\tilde{c}_{i\sigma}^{\dagger} \tilde{c}_{j\sigma} + \text{H.c.} \right) +J \sum_{\langle ij \rangle} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} n_{i} n_{j} \right) -h \sum_{i \in \mathcal{A}} S_{i}^{z} + h \sum_{j \in \mathcal{B}} S_{j}^{z}$$

Previous study in the 1D case [Bonča et al. '92, Prelovšek et al. '93]

(1) binding energy

$$E_{\rm B} = E_0(N_{\rm h} = 2) + E_0(N_{\rm h} = 0) - 2E_0(N_{\rm h} = 1)$$

If $E_{\rm B} < 0$ for $J > J_{\rm c}$, a bound hole-pair is formed.

♣ t-J_z-h model (analytic), J = J_z

$$h \ll t : E_{\rm B} = 0.909(th^2)^{1/3} - J$$

$$J_{\rm c} = 0.909(th^2)^{1/3}$$

$$h \gg t : E_{\rm B} = -\frac{J}{2} + \frac{2(2h-J)t^4}{(h+J/2)^3(2h+J/2)}$$

$$J_{\rm c}/t \sim 4(t/h)^3 \ll 1$$

cf. h = 0: Binding occurs only for $J > J_c = 4t$.

 $f t - J - h \mod (numerical)$

(2) correlation exponent at finite hole doping

charge-density-wave correlations: $C_{\rm CDW}(r) \sim r^{-K_{\rho}}$ for $r \gg 1$ superconducting correlations: $C_{\rm SC}(r) \sim r^{-1/K_{\rho}}$ for $r \gg 1$ * For $K_{\rho} < 1$, CDW is dominant. * For $K_{\rho} > 1$, SC is dominant.

1.0 J/t

1.5

2.0

0.5

Extension to the 2D case

* We use exact-diagonalization technique to investigate the following quantities at T = 0. [system size: $N = 4 \times 4, \sqrt{18} \times \sqrt{18}, \sqrt{20} \times \sqrt{20}$]

- (1) Binding energy
- (2) Hole correlations
- (3) Staggered-spin correlations
- (4) Superconducting correlations
- (5) Pair spectral function

Binding energy

 \diamondsuit size dependence for h/t = 0 [Shih et al. '98]

Hole correlations (J/t = 0.4)

$$C_{\rm hole}(\vec{r}) = \frac{1}{N} \sum \langle n_{\rm h}(\vec{i}) n_{\rm h}(\vec{i} + \vec{r}) \rangle$$

 \diamond root-mean-square separation of hole pair

$$r_{\rm rms} \equiv \sqrt{\langle r^2 \rangle}$$
$$\langle r^2 \rangle = \sum_{\vec{r} \neq \vec{0}} |\vec{r'}|^2 C_{\rm hole}(\vec{r}) / \sum_{\vec{r} \neq \vec{0}} C_{\rm hole}(\vec{r})$$

 $|\vec{r'}|$: substantial distance between two sites under p.b.c.

 ★ The separation of hole pair becomes smaller with increasing staggered field. Superconducting correlations

$$C_{\alpha}(\vec{r}) = \frac{1}{N} \sum_{\vec{i}} \langle \Delta_{\alpha}^{\dagger}(\vec{i}) \Delta_{\alpha}(\vec{i} + \vec{r}) \rangle, \quad \alpha = \text{ext.s.} \, \mathrm{d}_{x^2 - y^2}$$
$$\Delta_{\alpha}(\vec{i}) = \frac{1}{\sqrt{2}} \sum_{\vec{\epsilon}} f_{\alpha}(\vec{\epsilon}) \left(c_{\vec{i}\uparrow} c_{\vec{i}+\vec{\epsilon},\downarrow} - c_{\vec{i}\downarrow} c_{\vec{i}+\vec{\epsilon},\uparrow} \right)$$

where $\vec{\epsilon}$ is $(\pm 1, 0)$ and $(0, \pm 1)$.

★ For $n_h \leq 0.2$, the $d_{x^2-y^2}$ -wave correlations are enhanced by a staggered field. ★ The extended-s-wave ones hardly change at long distances. Pair spectral function

$$P_{\alpha}(\omega) = \sum_{n} |\langle \Psi_n(N_{\rm h} = 2) | \Delta | \Psi_0(N_{\rm h} = 0) \rangle|^2$$
$$\times \delta \left(\omega - E_n(N_{\rm h} = 2) + E_0(N_{\rm h} = 0) \right)$$

$$\Delta = \frac{1}{\sqrt{N}} \sum_{\vec{i},\vec{\epsilon}} f_{\alpha}(\vec{\epsilon}) \left(\tilde{c}_{\vec{i}\uparrow} \, \tilde{c}_{\vec{i}+\vec{\epsilon},\downarrow} - \tilde{c}_{\vec{i}\downarrow} \tilde{c}_{\vec{i}+\vec{\epsilon},\uparrow} \right)$$

N = 18, J / t = 0.4 $N_{\rm it} = 500$, Lorentzian width = 0.1

Spectral weight of "quasi-particle"

$$Z_{2h} = \frac{|\langle \Psi_0(N_h = 2) | \Delta | \Psi_0(N_h = 0) \rangle|^2}{\langle \Psi_0(N_h = 0) | \Delta^{\dagger} \Delta | \Psi_0(N_h = 0) \rangle}$$

 \star The "quasi-particle" peak seems to survive in the thermodynamic limit, especially for large h/t.

Staggered-spin correlations (J/t = 0.4)

$$C_{\rm spin}(\vec{r}) = \frac{1}{N} \sum_{\vec{i}} (-1)^{r_x + r_y} \langle S_{\vec{i}}^z S_{\vec{i}+\vec{r}}^z \rangle$$

r

 $d_{x^2-y^2}$ -wave superconducting correlations

staggered-spin correlations

★ Possibility of coexistence of the $d_{x^2-y^2}$ superconducting order and the commensurate AF order induced by a staggered field.

Summary

For the low-hole-density region $(n_{\rm h} \leq 0.2)$,

(1) The presence of staggered field

- **strengthens** the attraction between two holes.
- **helps** the $d_{x^2-y^2}$ -wave superconductivity.

(2) Coexistence of the $d_{x^2-y^2}$ -wave superconducting order and the commensurate AF order is likely to occur in a staggered field.