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Majorana zero-modes—a type of localized quasiparticle—hold 
great promise for topological quantum computing1. Tunnelling 
spectroscopy in electrical transport is the primary tool for 
identifying the presence of Majorana zero-modes, for instance 
as a zero-bias peak in differential conductance2. The height of 
the Majorana zero-bias peak is predicted to be quantized at the 
universal conductance value of 2e2/h at zero temperature3 (where 
e is the charge of an electron and h is the Planck constant), as a 
direct consequence of the famous Majorana symmetry in which a 
particle is its own antiparticle. The Majorana symmetry protects 
the quantization against disorder, interactions and variations 
in the tunnel coupling3–5. Previous experiments6, however, have 
mostly shown zero-bias peaks much smaller than 2e2/h, with a 
recent observation7 of a peak height close to 2e2/h. Here we report a 
quantized conductance plateau at 2e2/h in the zero-bias conductance 
measured in indium antimonide semiconductor nanowires covered 
with an aluminium superconducting shell. The height of our zero-
bias peak remains constant despite changing parameters such as the 
magnetic field and tunnel coupling, indicating that it is a quantized 
conductance plateau. We distinguish this quantized Majorana peak 
from possible non-Majorana origins by investigating its robustness 
to electric and magnetic fields as well as its temperature dependence. 
The observation of a quantized conductance plateau strongly 
supports the existence of Majorana zero-modes in the system, 
consequently paving the way for future braiding experiments that 
could lead to topological quantum computing.

A semiconductor nanowire coupled to a superconductor can be 
tuned into a topological superconductor with two Majorana zero-
modes localized at the wire ends1,8,9. Tunnelling into a Majorana mode 
will show a zero-energy state in the tunnelling density-of-states, that 
is, a zero-bias peak (ZBP) in the differential conductance (dI/dV)2,6. 
This tunnelling process is an ‘Andreev reflection’, in which an incom-
ing electron is reflected as a hole. Particle–hole symmetry dictates 
that the zero-energy tunnelling amplitudes of electrons and holes are 
equal, resulting in a perfect resonant transmission with a ZBP height 
quantized at 2e2/h (refs 3, 4, 10), irrespective of the precise tunnelling 
strength3–5. The Majorana nature of this perfect Andreev reflection is a 
direct result of the well-known Majorana symmetry property ‘particle 
equals antiparticle’11,12.

This predicted robust conductance quantization has not yet been 
observed2,6,7,13,14. Instead, most of the ZBPs have a height consider-
ably less than 2e2/h. This discrepancy was first explained by thermal 
averaging15–18, but that explanation does not hold when the peak width 
exceeds the thermal broadening (about 3.5kBT)13,14. In that case, other 
averaging mechanisms, such as dissipation19, have been invoked. The 
main source of dissipation is a finite quasiparticle density-of-states 

within the superconducting gap, often referred to as a ‘soft gap’. 
Substantial advances have been achieved in ‘hardening’ the gap by 
improving the quality of materials, eliminating disorder and inter-
face roughness20,21, and better control during device processing22,23, 
all guided by a more detailed theoretical understanding24. We have 
recently solved all these dissipation and disorder issues21, and here we 
report the resulting improvements in electrical transport leading to the 
elusive quantization of the Majorana ZBP.

Figure 1a shows a micrograph of a fabricated device and schematics 
of the measurement set-up. An InSb nanowire (grey) is partially covered  
(two out of six facets) by a thin superconducting aluminium shell 
(green)21. The ‘tunnel-gates’ (coral red) are used to induce a tunnel 
barrier in the non-covered segment between the left electrical contact 
(yellow) and the Al shell. The right contact is used to drain the current 
to ground. The chemical potential in the segment covered with Al can 
be tuned by applying voltages to the two long ‘super-gates’ (purple).

Transport spectroscopy is shown in Fig. 1b, which displays dI/dV 
as a function of voltage bias V and magnetic field B (aligned with the 
nanowire axis), while fixed voltages are applied to the tunnel- and  
super-gates. As B increases, two levels detach from the gap edge  
(at about 0.2 meV), merge at zero bias and form a robust ZBP. This is 
consistent with the Majorana theory: a ZBP is formed after the Zeeman 
energy closes the trivial superconducting gap and re-opens a topologi cal  
gap8,9. The gap re-opening is not visible in a measurement of the local 
density-of-states because the tunnel coupling to these bulk states is 
small25. Moreover, the finite length (about 1.2 μ m) of the proximi tized  
segment (that is, the part that is superconducting because of the 
proximity effect from the superconducting Al coating) results in  
discrete energy states, turning the trivial-to-topological phase transition 
into a smooth crossover26. Figure 1c shows two line-cuts from Fig. 1b 
extracted at 0 T and 0.88 T. Importantly, the height of the ZBP reaches 
the quantized value of 2e2/h. The line-cut at zero bias in the lower 
panel of Fig. 1b shows that the ZBP height remains close to 2e2/h over a  
sizable range in B field (0.75–0.92 T). Beyond this range, the height 
drops, most probably because of a closure of the superconducting gap 
in the bulk Al shell.

We note that the sub-gap conductance at B =  0 (black curve, left 
panel, Fig. 1c) is not completely suppressed down to zero, reminiscent 
of a soft gap. In this case, however, this finite sub-gap conductance does 
not reflect any finite sub-gap density-of-states in the proximitized wire. 
It arises from Andreev reflection (that is, transport by dissipationless 
Cooper pairs) due to a high tunnelling transmission, which is evident 
from the above-gap conductance (dI/dV for V >  0.2 mV) being larger 
than e2/h. As this softness does not result from dissipation, the Majorana 
peak height should still reach the quantized value27. In Extended Data 
Fig. 1, we show that this device tuned into a low-transmission regime, 
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where dI/dV does reflect the density-of-states, displays a hard gap 
(also shown in Extended Data Fig. 4, where the gap remains hard in a  
magnetic field). For further understanding, we use experimental 
parameters in a theoretical Majorana nanowire model28 (see Methods 
for more information). Figure 1d shows a simulation with two line-cuts 
shown in Fig. 1c (right panel). Besides the ZBP, other discrete sub-gap 
states are visible, which are due to the finite wire length. Such discrete 
lines are only faintly resolved in the experimental panels of Fig. 1b. 
Overall, we find good qualitative agreement between the experimental 
and simulation panels in Fig. 1b and d. An exact quantitative agreement 
is not feasible, as the precise experimental values for the parameters 
going into the theory (for example, chemical potential, tunnel coupling, 
Zeeman splitting or spin–orbit coupling) are unknown for our hybrid 
wire–superconductor structure.

Next, we fix B at 0.8 T and investigate the robustness of the quantized 
ZBP against variations in transmission by varying the voltage on the 
tunnel-gate. Figure 2a shows dI/dV while varying V and tunnel-gate 
voltage. Figure 2b shows that the ZBP height remains close to the 
quantized value. Importantly, the above-gap conductance measured 
at | V|  =  0.2 meV varies by more than 50% (Fig. 2c and d), implying 
that the transmission is changing considerably over this range while the 
ZBP remains quantized. The minor conductance switches in Fig. 2a–c  
are due to unstable jumps of trapped charges in the surroundings.

Figure 2d (red curves) shows several line-cuts of the quantized ZBP. 
The extracted height and width are plotted in Fig. 2e (upper panel) 
as a function of above-gap conductance GN =  T ×  e2/h where T is the 
transmission probability for a spin-resolved channel. Although the ZBP 

width does change with GN, the quantized height remains unaffected. 
Note that the ZBP width ranges from about 50 μ eV to about 100 μ eV, 
which is significantly wider than the thermal width of approximately 
6 μ eV at 20 mK. The ZBP width is thus broadened by tunnel coupling, 
instead of thermal broadening, fulfilling a necessary condition to 
observe a quantized Majorana peak. In Extended Data Fig. 2, we show 
that in the low-transmission regime in which thermal broadening 
domi nates over tunnel broadening, the ZBP height drops below 2e2/h 
(as explained in refs 15–18). The robustness of the ZBP quantization 
to a variation in the tunnel barrier is an important finding of our work.

A more negative tunnel-gate voltage (< − 8 V) eventually splits the 
ZBP, which may be explained by an overlapping of the two localized 
Majorana wavefunctions from the two wire ends. The tunnel-gate 
not only tunes the transmission of the barrier but also influences the 
potential profile in the proximitized wire part near the tunnel barrier. 
A more negative gate voltage effectively pushes the nearby Majorana 
mode away, towards the remote Majorana on the other end of the wire, 
thus reducing the length of the effective topological wire. This leads to 
the wavefunction overlap between the two Majorana modes, causing  
the ZBP to split16 (black curves in Fig. 2d). This splitting is also  
captured in our simulations shown in Fig. 2f, where we have checked 
that the splitting originates from Majorana wavefunction overlap. Note 
that the simulated ZBP height (red curve in middle panel in Fig. 2f)  
remains close to the 2e2/h plateau over a large range, whereas the 
above-gap conductance (black curve in lower panel in Fig. 2f) changes 
 substantially. Also, the height and width dependence in the simulation 
is in qualitative agreement with our experimental observation (Fig. 2e). 
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Figure 1 | Quantized Majorana zero-bias peak. a, False-colour scanning 
electron micrograph of device A (upper panel) and its schematics (lower 
panel). Side gates and contacts are Cr/Au (10 nm/100 nm). The Al shell 
thickness is approximately 10 nm. The substrate is p-doped Si, acting 
as a global back-gate, covered by 285 nm SiO2. The two tunnel-gates 
are shorted externally, as are the two super-gates. Scale bar, 500 nm. 
b, Magnetic field dependence of the quantized ZBP in device A with 
the zero-bias line-cut in the lower panel. Magnetic field direction 
is aligned with the nanowire axis for all measurements. Super-gate 
(tunnel-gate) voltage is fixed at − 6.5 V (− 7.7 V), while the back-gate is 

kept grounded. Temperature is 20 mK unless specified. c, Comparison 
between experiment and theory. Left (right) panel shows the vertical 
line-cuts from b (d) at 0 T and 0.88 T (1.07 meV). d, Majorana simulation 
of device A, assuming chemical potential μ =  0.3 meV, tunnel barrier 
length (LTG =  10 nm), with height ETG =  8 meV, and the superconductor–
semiconductor coupling is 0.6 meV. See Methods for further information. 
A small dissipation broadening term (about 30 mK) is introduced for all 
simulations to account for the averaging effect from finite temperature and 
small lock-in excitation voltage (8 μ V).
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To complete the comparison, we show in Fig. 2g the simulated line-cuts 
of several quantized ZBPs (red curves) and split peaks (black curves), 
consistent with the experimental data in Fig. 2d.

Pushing Majorana modes towards each other is one mechanism for 
splitting. Another way is by changing the chemical potential through the 
transition from a topological to a trivial phase8,9—the quantum phase 
transition from the trivial to the topological phase can equivalently  
be caused by tuning either the Zeeman energy (that is, the magnetic 
field) or the chemical potential. Splitting at the phase transition occurs 
because the Majorana wavefunctions start to spread out over the entire 
wire length. For long wires, the transition is abrupt, whereas in shorter 
wires a smooth transition is expected26. We investigate the dependence 
of the quantized ZBP on chemical potential by varying the voltage on 
the super-gate. Figure 3a shows a nearly quantized ZBP that remains 
non-split over a large range in the super-gate voltage. More positive 
voltage applied to the super-gates corresponds to a higher chemical 
potential, and eventually we find a ZBP splitting (around − 5 V or more 
positive) and consequently a suppression of the zero-bias conductance 
below the quantized value. Although the relation between the gate  
voltage and chemical potential is unknown in our devices, this splitting  
suggests a transition to the trivial phase caused by a tuning of the  
chemical potential induced by the changing super-gate voltage.

In a lower B field and different gate settings (Fig. 3b), the splitting 
of the quantized ZBP shows oscillatory behaviour as a function of the 
super-gate voltage. The five line-cuts on the right panel highlight this 

back-and-forth behaviour between quantized and suppressed ZBPs. 
Notably, the ZBP height comes back up to the quantized value and 
does not cross through it.

We find similar behaviour in the theoretical simulations of Fig. 3c. In 
these simulations, we have confirmed that for the chosen parameters, 
the Majorana wavefunctions oscillate in their overlap, thus giving rise 
to the back-and-forth behaviour of quantized and split ZBPs29. In the  
experiment, it may also be that non-homogeneity, possibly somewhere in 
the middle of the wire, causes overlap of Majorana wavefunctions. Again, 
we note that the conversion from gate voltage to chemical potential  
is unknown, preventing a direct quantitative comparison between 
experiment and simulation.

To demonstrate the reproducibility of ZBP quantization, we show 
in Fig. 4a the quantized ZBP data from a second device. In this second 
device, the length of the proximitized section is about 0.9 μ m, which is 
about 0.3 μ m shorter than in the previous device. The quantized ZBP 
plateau is indicated by the region between the two green dashed lines 
in Fig. 4b (red curve). This second device allows transmission of more 
than one channel through the tunnel barrier, which we deduce from 
the above-gap conductance value (Fig. 4b, lower panel, black curve) 
exceeding e2/h for tunnel-gate voltages higher than about − 0.55 V. 
Correspondingly, the zero-bias conductance can now exceed 2e2/h  
(Fig. 4b, middle panel) for such an open tunnel barrier5. Tunnelling 
through the second channel in the barrier region results in an additional 
background conductance, thus leading to the zero-bias conductance 
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Figure 2 | Quantized Majorana conductance plateau. a, Tunnel-gate 
dependence of the quantized ZBP at B =  0.8 T. Super-gate (back-gate) 
voltage is fixed at − 6.5 V (0 V). b, c, Horizontal line-cuts from a, showing 
zero-bias conductance and above-gap conductance, respectively. The 
zero-bias conductance shows a quantized plateau. d, Several vertical 
line-cuts from a, showing ZBPs with quantized height (red curves). For 
the black curves, the zero-bias conductance drops below the quantized 
value owing to peak splitting. e, (Upper panel) ZBP height (red squares) 
and width (black dots) extracted from d (red curves), as a function of 

above-gap conductance (GN). The width is defined by the bias voltage at 
which dI/dV =  e2/h. (Lower panel) ZBP height and width extracted from 
several simulation curves in f. f, Majorana simulation of the tunnel-gate 
dependence. We set the Zeeman field VZ =  0.8 meV and chemical potential 
μ =  0.6 meV, such that the nanowire is in the topological regime. From 
left to right, the barrier width decreases linearly from 175 nm to 0 nm, as 
the barrier height decreases from 2.1 meV to 0. g, Vertical line-cuts from f 
show the quantized ZBP (red) and split peaks (black).
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rising above 2e2/h. We find, however, from a rough estimate of this 
background contribution that the net ZBP height (above background) 
never exceeds 2e2/h, consistent with Majorana theory5.

We next fix the B field and study temperature dependence. Figure 4c  
shows a line-cut of this quantized ZBP from Fig. 4a. First, the base 
temperature trace in Fig. 4c (red data points) fits well to a Lorentzian 
line-shape with a 20 mK thermal broadening, expected for Majoranas30 

as well as for any type of resonant transmission. The ZBP temperature  
dependence is shown in line traces in Fig. 4d and in colour scale 
in Fig. 4e (with the corresponding simulation in the lower panel of 
Fig. 4e). Figure 4f shows the extracted ZBP height and ZBP width 
(full-width at half-maximum, FWHM) from both the experimental 
and simulated traces. At low temperatures, the ZBP width (red data 
points) exceeds the thermal width defined as 3.5kBT (blue line). In 
agreement with theory31, the ZBP height (black data points) reaches 
and saturates at 2e2/h when the FWHM exceeds 3.5kBT. For higher 
temperatures, thermal averaging starts to suppress the ZBP height 
below the quantized value. The simulated data are calculated by a  
convolution of the derivative of the Fermi distribution function 
and the dI/dV trace at a base temperature of 20 mK. This procedure  
of incorporating thermal effects holds if the temperature of the  
calculated dI/dV curve is significantly larger than base temperature 
(which can then be assumed to be the effective zero-temperature  
conductance value). We find excellent agreement between experiment 
and simulation for T >  50 mK (Fig. 4f). See Extended Data Fig. 3 for 
detailed temperature dependence.
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Recent theoretical work28 has shown numerically for experimentally  
relevant parameters that ZBPs can also arise from local and non- 
topological Andreev bound states (ABS)16,32–35. These local ABS appear 
remarkably similar in tunnelling spectroscopy to the ZBPs arising 
from Majorana zero-modes. In a third device, we are able to find such 
non-topological states by fine-tuning the gate voltages (see Extended 
Data Fig. 7 for specifics of all devices). Figure 5 shows the similarities 
and differences between ABS and Majorana ZBPs. First, Fig. 5a shows 
a ZBP in tunnelling spectroscopy versus B field. At a particular B field 
(0.7 T, red bar), the ZBP height reaches 2e2/h. In this device, we next 
vary the chemical potential by means of a voltage applied to a back-gate, 
producing a fairly stable (non-split) ZBP (Fig. 5b). In contrast, the ZBP 
is unstable against variations in tunnel-gate voltage: Fig. 5c shows that 
the ZBP now appears as level crossings instead of being rigidly bound to 
zero bias. The two different behaviours between back-gate and tunnel- 
gate are expected for ABSs that are localized near the tunnel barrier, as 
was modelled explicitly in ref. 28 (see also Extended Data Fig. 5). Liu 
et al.28 show that local ABSs can have near-zero energy, which in a B 
field is remarkably robust against variations in chemical potential, in 
our experiment tuned by the back-gate. But this is only the case for the 
tunnel-gate voltage fine-tuned to level crossing points at zero bias. The 
local tunnel-gate and the global back-gate thus have distinguishably 

different effects. For the Majorana case, instead of level crossing, the 
ZBP should remain non-split over sizable changes in tunnel-gate  
voltage14,36, as shown in Fig. 2a and Fig. 4b.

The second fundamental difference is that the non-topological ABS 
ZBP height is not expected to be robustly quantized at 2e2/h (refs 5, 28).  
Figure 5d and e shows that the ZBP height varies smoothly as a 
function of the back-gate voltage without any particular feature at 
2e2/h. The ZBP height in Fig. 5a at 2e2/h is just a tuned coincidence 
(see Extended Data Fig. 6). Note that the ZBP line-shape or tem-
perature dependence does not discriminate between topological and 
non- topological cases. Both fit a Lorentzian line-shape as shown 
explicitly for the non- topological ABS in Fig. 5f. Thus, the tempera-
ture dependence alone cannot distinguish a Majorana origin from 
ABS7,31,32. Only a stable quantized tunnel-conductance plateau, robust 
against variations in all gate voltages and magnetic field strength, can 
uniquely identify a topo logical Majorana zero-mode in tunnelling 
spectroscopy.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOds
Theory model. We use the theoretical model from ref. 28 to perform numerical 
simulations with experimentally relevant parameters, such as the effective mass 
m*  =  0.015me, the spin–orbit coupling α =  0.5 eV Å, the chemical potential of the 
normal metal lead μlead =  25 meV, the Landé g-factor g =  40 such that the Zeeman 
energy VZ [meV] =  1.2 B [T], and the length of the nanowire L =  1.0 μ m. Note 
that the collapse of the bulk Al superconducting gap is included explicitly in the 
theory to be consistent with the experimental situation in which the bulk gap 
collapses at about 1 T.

Lorentzian fit. We fit our ZBP line-shape with the Lorentzian formula: 
= Γ

Γ +
G V( ) e

h eV
2

( )

2 2

2 2
, where Γ defines the tunnel coupling and FWHM of the  

peak, that is, 2Γ. Then we do convolution integration with the derivative of the 
Fermi distribution function (at 20 mK) to fit our ZBP shape. Because the FWHM 
of our ZBP is much larger than the thermal width, we take Γ to be roughly equal 
to half of the FWHM for all the fittings in Fig. 4c and Fig. 5f.
Data availability. The data that support the findings of this study are available within 
the paper. Additional data are available from the corresponding authors upon request.
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Extended Data Figure 1 | Apparent ‘soft gap’ due to large Andreev 
reflection. a, Differential conductance dI/dV of the device in Figs 1–3 
(device A) as a function of bias voltage at zero magnetic field. The tunnel-
gate voltage is tuned to more negative from the top curve to the bottom 
curve. The transmission probability of the tunnel barrier is tuned from 
large (black curve) to small (orange curve). In the low transmission regime 
(orange curve), where the above-gap conductance (about 0.03 ×  2e2/h) is 
much less than 2e2/h, dI/dV is proportional to the density of states in the 
proximitized wire part, resolving a hard superconducting gap. In the high 

transmission regime (black curve), where the above-gap conductance 
is comparable with 2e2/h, the finite sub-gap conductance is due to large 
Andreev reflection. This ‘soft gap’ is not from dissipation, and does not 
affect the quantized ZBP height as shown in c. b, Re-plot of the two 
extreme curves from a, for clarity. c, Waterfall plot of Fig. 1b, showing 
all the individual curves from 0 T to 1 T in steps of 0.02 T. The curves are 
offset vertically by 0.066 ×  2e2/h for clarity. The curve at 0 T and the red 
curve at 0.88 T correspond to the curves in Fig. 1c (left panel).
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Extended Data Figure 2 | Thermal-broadened ZBP in low transmission 
regime. a, Differential conductance dI/dV of device D, as a function of 
B, showing a stable ZBP. b, Vertical line-cuts at 0 T, 0.88 T and 0.94 T. At 
B =  0 T, the above-gap conductance (approximately 0.05 ×  2e2/h) is much 
less than 2e2/h, which means that the device is in the low transmission 
regime, and thus shows a hard gap. The tiny sub-gap conductance is 
due to the small Andreev reflection and the noise background of the 
measurement equipment. The low transmission leads to a narrow ZBP 
width, which is negligible compared with the thermal width of 3.5kBT. 
Thus, thermal averaging suppresses the ZBP height below the quantized 

value. The sub-gap conductance at finite B (for example, 0.88 T or 0.94 T), 
where the ZBP appears, is the same as the sub-gap conductance at zero 
field, indicating that the gap remains hard at high magnetic field where the 
Majorana state is present. c, The zoom-in curves show that the FWHM of 
the ZBP is about 28 μ eV, which is consistent with the combined effect of 
the thermal broadening (3.5kBT ≈  6 μ eV at 20 mK), the lock-in bias voltage 
excitation (5 μ eV) and broadening from tunnelling. This shows that the 
thermal broadening does indeed dominate over tunnel broadening.  
d, Waterfall plot of a with vertical offset of 0.01 ×  2e2/h for clarity.
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Extended Data Figure 3 | Simulation of temperature dependence  
on the quantized ZBP. a, False-colour scanning electron micrograph  
of device B with data shown in Fig. 4. Scale bar is 1 μ m. The length  
of the Al section is about 0.9 μ m. We calculate the dI/dV curve at  
high temperature by convolution of the derivative of the Fermi  
distribution function with the dI/dV curve at base temperature  
of 20 mK: ∫/ = =

−∞

∞ −
ε ε

ε

ε
I V G V T Gd d ( , ) d ( , 0) f eV Td ( , )

d
, where  

T is temperature, V is bias voltage, and f E T( , ) is the Fermi distribution 
function. Because we use the dI/dV curve at 20 mK as the  
zero-temperature data, our model only works for T sufficiently  

larger than 20 mK, that is, T >  50 mK. b, Comparison between the 
experimental data (left, taken from Fig. 4d) and theory simulations, for 
different temperatures. c, Several typical curves at different temperatures; 
black traces are the experimental data, and the red curves are the theory 
simulations with no fitting parameters. The agreement between simulation 
and experiment indicates that thermal averaging effect is the dominating 
effect that smears out the ZBP at high temperature. d, Temperature 
dependence of the ZBP taken from our theory model: Fig. 1c (right panel). 
The temperature varies from 25 mK to 700 mK in steps of 23 mK.
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Extended Data Figure 4 | Perfect ballistic Andreev transport in InSb–Al 
nanowires. a, False-colour scanning electron micrograph of the device in 
Fig. 5 (device C). Scale bar is 500 nm. Electrical contacts and top gates are 
Cr/Au. Lower panel shows the device schematic and measurement set-up. 
The two top-gates (tunnel-gate and super-gate) are separated from the 
nanowire by 30-nm-thick SiN dielectric. The global back gate is p-doped 
Si covered by 285-nm-thick SiO2 dielectric. b, Differential conductance  
dI/dV, as a function of bias voltage (V) and tunnel-gate voltage at zero 
field. No localization effect (conductance resonances or quantum-dot-
induced Coulomb blockade) is observed. c, Vertical line-cuts from b at 
tunnel-gate voltage of − 0.18 V (lower panel) and − 0.12 V (upper panel), 
showing a hard superconducting gap in the low transmission regime 
(lower panel) and strong Andreev enhancement in the open regime 

(upper panel). d, Horizontal line-cuts from c for V =  0 mV (pink, sub-
gap conductance, GS) and V =  0.45 mV (green, above-gap conductance, 
GN). The blue curve is the calculated sub-gap conductance using 
GS =  4e2/h ×  T2/(2 −  T)2, where the transmission T is extracted from the 
above-gap conductance: GN =  (2e2/h) × T. e, Sub-gap conductance GS 
as a function of GN (black dots) and the theory prediction (red curve): 
GS =  2GN

2/(2 −  GN)2, with GS and GN in unit of 2e2/h. Both d and e show 
perfect agreement between theory and experiment. This indicates that the 
sub-gap conductance is indeed dominated by the Andreev reflection, that 
is, without contributions from sub-gap states. f, Magnetic field dependence 
of the hard gap. Lower panel shows the zero-bias line-cut. The gap remains 
hard up to 1 T, where the bulk superconducting gap closes.
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Extended Data Figure 5 | Majoranas versus trivial Andreev bound 
states. a, b, Schematics of a Majorana nanowire device. The only difference 
between the left column (Majorana) and right column (ABS) is the 
chemical potential, as shown in c and d. c, d, Potential profile in the 
device. The tunnel barrier height is 10 meV and the width is 10 nm. The 
dot potential shape is =−E x V( ) sinD (πx/ldot), for x between 0 and 0.3 μ m, 
where the length of the dot (ldot) is 0.3 μ m, and VD is the dot depth which 
can be tuned by the nearby gate, that is, the tunnel-gate. The rest of the flat 
nanowire segment is 1 μ m long. We assume a pairing potential 
∆  =  0.2 meV, with a spin–orbit coupling of 0.5 eV Å. We set the Zeeman 
energy to be 1 meV, so the chemical potential of 0.5 meV (left) corresponds 
to the topological regime, and 1.2 meV (right) corresponds to the trivial 
regime, based on the topological condition μ ∆> +VZ

2 2 , where μ is 
chemical potential. e, f, Spatial distribution of the Majorana and ABS 
wavefunctions in the topological and trivial regime. In the topological 
regime, two spatially well separated Majoranas (red and black) are 
localized at the two ends of the topological section. In the trivial regime, 

the Andreev bound state, which can be considered as two strongly 
overlapped Majoranas (red and black), is localized near the tunnel barrier. 
g, h, The Majorana ZBP remains non-split against the change of dot 
potential, regardless of the energy of the dot level. The green arrow 
indicates one bound state in the dot, whose wavefunction | Ψ2|  is shown in 
e (green curve). When this dot level moves down, it is repelled from zero 
energy, where the Majorana ZBP remains bound to zero (inset of i). On the 
contrary, the ABS-induced ZBP is not robust at all and only shows up at 
the crossing points of two Andreev levels. This is because the tunnel-gate 
tunes the dot potential, which therefore affects the energy of the localized 
ABS near the tunnel barrier. i, j, The Majorana ZBP height shows a 
quantized plateau at 2e2/h by tuning the dot potential with tunnel-gate. 
The ZBP height drops from the quantized value (inset) when the ABS-dot 
level moves towards zero, which effectively squeezes the ZBP-width such 
that the thermal averaging effect starts to dominate. The ABS zero-bias 
conductance does not show a plateau, but instead varies between 0 and 
4e2/h.
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Extended Data Figure 6 | Magnetic field dependence of trivial Andreev 
bound states. a, Top panel is a re-plot of the trivial ABS data in Fig. 5a. 
Middle and bottom panels are the ZBP data at different back-gate voltages 

(labelled in the panels). b, Line-cuts of the ZBP data from a. The ZBP 
height varies with back-gate voltages and can exceed 2e2/h. The ZBP height 
at 2e2/h here is just a tuned coincidence.
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Extended Data Figure 7 | Specifics of devices. We fabricated and tested 
many (over 60) devices out of which we selected 11 devices that showed 
good basic transport with all gates being fully functional. These were used 
for extensive measurements. Although most of these devices show ZBPs 
after tuning gate voltages and magnetic field, only two devices (presented 
in the main text: Figs 1–3 for device A and Fig. 4 for device B) show a 
quantized ZBP plateau. All other devices show trivial ZBPs similar to  
Fig. 5 (from device C). Scanning electron microscope images of devices 
A, B and C are shown in Fig. 1a, Extended Data Fig. 3a and Extended 
Data Fig. 4a, respectively. Here we show the scanning electron microscope 
images of the other eight devices, which we have explored extensively, but 
without finding a quantized ZBP plateau. Devices 1 and 2 are side-gate 

devices. Device 3 has a top tunnel-gate separated from the nanowire by 
30-nm-thick SiN dielectric, and a global back-gate separated by 285-nm-
thick SiO2. Devices 4 and 5 have tunnel-gate and super-gate on top 
separated from the nanowire by 30-nm-thick SiN dielectric. Devices 6 to 8 
have two layers of top-gate. The bottom layer has a tunnel-gate separated 
by 30-nm-thick SiN dielectric while the top layer has super-gates separated 
by 30-nm-thick SiN from the bottom layer. The scale bar is 1 μ m for all 
devices, except for device 2, which is 500 nm. It would be informative 
to perform Schrodinger–Poisson calculations on these different device 
geometries to determine the self-consistent potential landscape and 
find out which geometry suppresses a local potential dip near the tunnel 
barrier.
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